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Abstract

Influenced by factors such as brain states and behavior, neurons exhibit substantial response
variability even to identical stimuli. Because these factors are non-stationary, they dynamically
impact the fidelity of sensory processing. However, it remains unclear how their relative impact on
neuronal variability evolves over time. To address this question, we designed an encoding model
with latent states to partition visual cortical variability across three crucial categories of sources:
internal brain dynamics, behavior, and external visual stimulus. Applying a hidden Markov model
to the rhythmic patterns of cortical local field potentials, we consistently identified three distinct
oscillation states. Each state revealed a unique variability profile and a consistent descending trend
of stimulus modulation across the visual hierarchy. Regression models within each state revealed a
dynamic composition of factors contributing to the observed spiking variability, with the primary
influencing factor switching within seconds. In the state dominated by high-frequency oscillations,
sensory inputs and behavior exerted the most influence on population dynamics. Conversely, internal
brain activity explained most of the variance in the state dominated by low-frequency oscillations.
This heterogeneity across states underscores the importance of partitioning variability over time,
particularly when considering the dynamic influence of non-stationary factors on sensory processing.
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1 Introduction1

The amount of information a sensory neuron carries about external stimuli is reflected in its repeated activity2

pattern in response to the same stimuli (Reinagel and Reid 2000). However, trial-to-trial variability, ubiquitous3

in the nervous systems (Shadlen and Newsome 1998), constrains the amount of sensory information in single-trial4

neural responses to the stimulus. It follows that the time course of this variance mimics the highly non-stationary5

dynamics of the underlying neuronal processes (Churchland et al. 2011, Churchland et al. 2010). For example,6

when animals actively explore their environment, the sensory cortex shows desynchronized responses in a manner7

that increases their responsiveness to stimuli (Poulet and Petersen 2008). Conversely, during periods of sleep or8

quiet wakefulness, cortical neurons tend to synchronize their activity, resulting in decreased sensitivity to external9

stimuli (White et al. 2012). Dissecting these non-stationary dynamics is critical to comprehending their role in10

information encoding and ultimately, perception.11

Even with well-controlled experiments and behavior-monitoring techniques (Nath et al. 2019; Pereira et al.12

2022), understanding how neuronal variability changes over time is challenging (Festa et al. 2021). This is further13

complicated by the high-dimensional interactions between the various sources of neuronal variability: external14

stimuli, behavior, and internal brain dynamics (Goris et al. 2014). To address this complexity, a common strategy15

involves the identification of meaningful temporal patterns and potential latent variables that can capture the16

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.03.587408doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587408
http://creativecommons.org/licenses/by-nc-nd/4.0/


evolving dynamics of neural activity. These patterns, which accurately capture the internal brain dynamics, are17

typically referred to as “brain states” (Harris and Thiele 2011; McGinley et al. 2015; Poulet and Petersen 2008;18

Recanatesi et al. 2022).19

Brain states, characterized by distinct patterns of neural activity and functional connectivity, play a pivotal20

role in shaping the dynamics of neuronal variability (Recanatesi et al. 2022; White et al. 2012), influencing how21

sensory information is processed (Churchland et al. 2010; Lombardo et al. 2018) and behaviors are executed22

(McGinley et al. 2015; Poulet and Petersen 2008). For instance, during heightened attention, decreases in the23

correlations between the trial-to-trial fluctuations in the responses of pairs of neurons, serve to enhance the24

signal-to-noise ratio of the entire population, improving behaviors (Cohen and Maunsell 2009). Likewise, several25

studies have shown that random fluctuations in the processing of sensory stimuli originate from rapid shifts in26

the animal’s arousal state (Britten et al. 1996; McGinley et al. 2015). Tightly linking internal brain dynamics to27

behavior, brain states serve as an ideal temporal framework to study the non-stationarity of neuronal variability.28

Recently, researchers have leveraged advanced machine-learning tools to explain single-trial neural activity by29

incorporating extensive stimulus and behavioral features (Musall et al. 2019; Pandarinath et al. 2018; Stringer30

et al. 2019). While these studies reveal the multi-dimensional nature of neuronal variability, they often assume31

that neuronal variability remains constant over time. To address this gap, several parallel lines of research have32

used latent dynamical models to study the temporal patterns of neuronal variability (Ashwood et al. 2022; Calhoun33

et al. 2019; Poulet and Petersen 2008; Recanatesi et al. 2022). However, these studies have not explicitly explored34

the different sources contributing to variability, as it changes over time. Consequently, our understanding of how35

various sources dynamically contribute to the non-stationarity of neuronal variability remains limited (Figure36

1A).37

Here, we present a comprehensive investigation of how internal and external factors collectively shape the38

time course of neuronal variability to influence sensory coding. We used the Allen Brain Observatory Visual39

Coding dataset, which comprises simultaneous recordings of local field potentials (LFPs) and spiking activity40

from hundreds of Neuropixels channels in multiple visual areas along the anatomical hierarchy (Harris and Thiele41

2011). As mice passively viewed natural movies, we applied Hidden Markov Models (HMMs) (Rabiner 1989) on42

LFP data extracted from six visual cortical regions to establish a global temporal framework of internal latent43

states. Quantifying various aspects of variability across individual trials and neuronal populations, we uncovered44

significant non-stationarity in neuronal variability across states. These findings indicated dynamic changes in the45

efficiency of sensory processing over time, revealing a consistent descending trend of stimulus induced variability46

across the visual hierarchy. To elucidate the relationship between these non-stationarities and various sources47

of variability, we designed a novel HMM-based encoding framework to partition variability across three crucial48

factors: internal brain dynamics, spontaneous behavior, and external visual stimuli. Through this model, we49

quantified the time-varying contributions of these sources to single-trial neuronal and population dynamics. We50

found that even during persistent sensory drive, neurons dramatically changed the degree to which they were51

impacted by sensory and non-sensory factors within seconds. Taken together, our results provide compelling52

evidence for the dynamic nature of sensory processing, while emphasizing the role of latent internal states as a53

dynamic backbone of neural coding.54

2 Results55

We analyzed the publicly available Allen Brain Observatory Neuropixels dataset, previously released by the Allen56

Institute (Siegle, Jia, et al., 2021). This dataset comprises simultaneous recordings of spiking activity and local57

field potentials (LFPs) from six interconnected areas in the visual cortex of mice (n = 25) passively viewing58

a variety of natural and artificial visual stimuli (Figure 1B). To estimate the dynamic nature of internal state59

fluctuation during sensory processing, we focused our analysis on data recorded during repeated presentations of60

a 30-second natural movie. We used a continuous stimulus to mitigate sudden transients in activity induced by61

abrupt changes in the visual stimuli. Lastly, the application of quality control metrics yielded, on average, 304 ±62

83 (mean ± std) simultaneously recorded neurons distributed across layers and areas per mouse (see Methods).63

Previous studies (Siegle, Jia, et al., 2021, Jia et al. 2022) demonstrated that the functional hierarchy of visual64

areas aligns with their anatomical organization (Harris et al. 2019). This hierarchy places the primary visual cortex65

(V1) at the bottom, followed by rostrolateral (RL), lateromedial (LM), anterolateral (AL), posteromedial (PM),66

and anteromedial (AM) areas (Figure 1C). Here, we consider this visual hierarchy as a first-order approximation67

of signal processing stages to study signal propagation and information encoding while crucially accounting for the68

non-stationarity in spiking variability that arises due to influences from fluctuating internal and external factors.69

Identification of oscillation states from local field potentials70

Internal brain states can vary without clear external markers, making their quantification challenging. To capture71

state changes associated with internal processes, we employ a definition of brain states derived using LFPs recorded72

invasively from six visual areas (Siegle, Jia, et al., 2021). LFPs reflect aggregated sub-threshold neural activity73

and capture the highly dynamic flow of information across brain networks (Buzsáki et al. 2012). The spectral74

decomposition of LFPs reveals different frequency bands that correlate with specific cognitive states (Berens et al.75
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Figure 1: Schematic overview on deciphering variability across time and hierarchy A, Neuronal
variability is a combined effect of influences from independent stochastic processes including external
sensory factors, behavior, and fluctuations in internal brain states. The resulting neuronal responses
exhibit a variable temporal structure across trials and individual neurons. Capturing these temporal
dynamics is a challenging problem and lies at the core of understanding the functional role of neuronal
variability. B, Top: Schematic of the experimental setup. Bottom: Neuropixels probes in six visual
cortical areas simultaneously record local field potentials and spiking activity. A retinotopic sign map
overlaid on the vasculature image guides area-specific targeting. C, Anatomical hierarchy scores of the
six visual areas recomputed from (Harris et al. 2019). Studying variability along the visual hierarchy can
reveal important insights about information propagation and encoding at each stage of signal processing.

2010; Caton 1875; Jacinto et al. 2013), sensory processing (Akella et al. 2021; Di et al. 1990; Jia and Kohn 2011;76

Schroeder et al. 2001; Victor et al. 1994), and behavior (DeCoteau et al. 2007; Murthy and Fetz 1996; Scherberger77

et al. 2005). We found that LFPs in the mouse visual areas also revealed a distinct frequency spectrum across78

time, whose dynamics were strongly coupled to arousal-related behavioral variables (Figure 2A). Accordingly, we79

envisioned that a latent state model could reflect the underlying latent brain dynamics by capturing the dynamic80

patterns of the LFP spectrum, such that each latent state reflects an oscillation state. To extract these oscillation81

states from LFPs in the visual area, we employ Hidden Markov modeling (Beron et al. 2022; Linderman et al. 2017;82

Rabiner 1989) on filtered envelopes of LFPs within distinct frequency bands: 3 - 8 Hz (theta), 10 - 30 Hz (beta),83

30 - 50 Hz (low gamma), and 50 - 80 Hz (high gamma). This approach enabled us to fully capture LFP power84

across the 3−80 Hz frequency range (Figure S1A), while also aligning with the observed frequency boundaries in85

the spectral decomposition of LFPs (Figure 2B, left panel). Finally, to capture laminar dependencies, the overall86

input to the HMM also comprised LFPs from superficial, middle and deep layers in all visual areas (one channel87

each from layer 2/3, layer 4, layer 5/6; Figures 2B (middle panel), S1E, F).88

We found that LFP dynamics in the visual cortex consistently unfolded through three reliable oscillation89
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Figure 2: Properties of internal oscillation states identified from local field potentials in
awake behaving mice A, Top: LFP power modulations in V1 recorded from mice passively viewing a
naturalistic movie. Bottom: Time course of running speed and pupil area during the same time period.
B, Schematic to identify oscillation states using local field potentials. Discrete states are defined based
on frequency-specific transients of LFPs from 6 visual areas. Hidden Markov model (HMM) uses Hilbert
transforms in the theta (3-8 Hz), beta (10-30 Hz), lower gamma (30-50 Hz), and higher gamma (50-80 Hz)
frequency ranges. C, Left: Model comparison among HMMs over a range of latent states using three-fold
cross-validation. Test set log-likelihood penalized by state similarity (λ1) is reported. Right: Evaluation
of state similarity (λ1) as the top eigenvalue of the HMM covariance matrix. D, Top: State posterior
probabilities identified by the HMM. Bottom: LFPs from V1 alongside their respective latent states in
the same duration. E, LFP power distribution in the three-state model. In state-1, or the high-frequency
state, LFPs are dominated by high-frequency gamma oscillations. State 3, or the low-frequency state, has
characteristic slow oscillations in the theta band. F, Histogram of state dwell times in each trial across
all states and all mice. G, Average probability of observing 3-step or 2-step (inset) transition sequences
to different states. Transition probabilities were calculated from observed sequences averaged across all
mice.

states across all mice (see Methods; Figure 2C, 3.08 ± 0.39, n = 25 mice, mean ± std). These states did not90

depend on stimulus types (Figure S4A, B), specific visual areas (Figure S1B, C), or layers (Figure S1E, F).91

The identity of the inferred states was also remarkably consistent across mice, each characterized by a distinct92

distribution of the power spectrum: a high-frequency state (SH), a low-frequency state (SL), and an intermediate93

state (SI). While the high-frequency state is characterized by increased power in the low and high gamma bands,94

slow oscillations dominate the low-frequency state dynamics in the theta frequency ranges (Figures 2D, E, S2C).95

LFP power distribution in the intermediate state is more uniform.96

These oscillation states demonstrate stable dynamics, as reflected by the large values along the diagonal of97

the transition matrix, ranging between 0.94 and 0.99 (Figure S3B). Dwell time in a state averaged around 1.5 ±98

0.14s (mean ± sem, n = 3 states) (Figure 2D, F), and the transition intervals between consecutive states (the99

interval around a transition during which the HMM posterior probability is < 80 %) were significantly shorter100

than the dwell times, lasting only for about 0.13 ± 0.006s (mean ± sem). Additionally, direct transitions between101

the low- and high-frequency states were rare and required transitioning through the intermediate state, as evident102

in both two- and three-step transition sequence-probability trends (Figure 2G). Consequently, mice spent only103

short durations in the intermediate state (0.97 ± 0.001s, mean ± sem), while they spent the most prolonged104
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Figure 3: Behavioral correlates of the observed oscillation states A, Face motion energy eval-
uated as the absolute value of the difference between consecutive frames. B, Eye and pupil tracking.
Tracking points were identified using a universal tracking model trained in DeepLabCut. C, Animal
pose estimation. Specific, visible body parts were tracked using a universal tracking model trained in
SLEAP. D, Example snippet of behavioral changes alongside the animal’s current oscillation state. SH :
High-frequency state (green), SI : Intermediate state (blue), and SL: Low-frequency state (pink). E,
Comparison of the average movement of specific body parts across states (pSH ,SI,L

, pupil size: p = 2.8e-
15, velocity: p = 2.0e-17, face motion: p = 6.3e-13, body center: p = 2.6e-18, left forelimb: p = 1.2e-13,
left hindlimb: p = 4.9e-14, right hindlimb: p = 3.0e-11, tail start:, p = 3.0e-16, tail end: p = 2.0e-11,
n = 25 mice). F, Mutual information (MI) between behavioral variables and the inferred HMM states
(mean ± sem, n = 25 mice).

durations in the high-frequency state (1.92 ± 0.003s, mean ± sem, pSH ,SI = 0.0, pSH ,SL = 6.6e-79, pSI ,SL =105

1e-11, n = 25 mice). Notably, this state property was dependent on stimulus type (Figure S4D). During repeated106

presentations of the drifting grating stimulus, transitions between the extreme states of low- and high-frequency107

were much faster and more likely (Figure S4E,F). This significantly reduced the amount of time mice spent in108

the intermediate state (0.25 ± 0.0001s, p = 0, Figure S4C). However, in the absence of any stimulus, mice tended109

to spend longer durations in the intermediate state (1.16 ± 0.001s, p = 3.5e-29). We attribute these differences110

to the strong neural responses evoked by sudden transitions of the visual stimulus such as, the onset and offset of111

drifting gratings stimuli.112

Correlation between oscillation states and body movements113

Brain state variations often exhibit strong correlations with the animal’s behavioral context (Mccormick et al.114

2020; Zagha and McCormick 2014). Indeed, several studies have reported neural activity changes in the visual115
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cortex associated with various behavioral features (Bennett et al. 2013; Musall et al. 2019; Niell and Stryker 2010).116

To this end, we examined the behavioral correlates of the oscillation state patterns, comparing pupil size, running117

speed, and facial, limb, and tail movements across different states (Figure 3A-C). Our investigation revealed118

a strong association between behavioral movements and internal oscillation states across subjects (Figure 3E).119

Notably, a shift to the high-frequency state corresponded closely with increased movements and pupil size (Figure120

3D), suggesting increased arousal levels in this state. Conversely, mice tended to be at rest in the low-frequency121

state while only making small movements in the intermediate state (McGinley et al. 2015; Reimer et al. 2016;122

Vinck et al. 2015).123

Several studies have considered locomotion as an indicator of brain state to examine variations in visual124

encoding (Saleem et al. 2013; Stringer et al. 2019). To quantify the relationship between internal oscillation125

states and different behavioral features, we calculated the mutual information (MI) between the states and each126

behavioral feature (Sanchez Giraldo et al. 2015). We found that changes in the oscillation states were more127

faithfully mimicked by pupil size or facial movements (Figure 3D), reporting significantly higher MI than all128

other behavioral responses (MIpupil = 0.12± 0.006,MIface = 0.1± 0.006, mean ± sem, n = 25 mice), including129

running (MIrunning = 0.08 ± 0.007, mean ± sem, n = 25 mice, Figure 3F). This held true despite the strong130

positive correlations between all behavior variables (r = 0.4 ± 0.03, mean ±, sem, n = 25 mice), and especially131

between running, facial movement, and pupil size (r = 0.6 ± 0.04, mean ±, sem, n = 25 mice). Importantly,132

all behaviors associated with running (movements in the proximal end of the tail, left limbs, and body center)133

reported similar MI with the oscillation states. To further validate these results, we used HMMs to quantify134

behavioral states in individual mice, fitting individual models to pupil size, face motion, and running measures.135

Upon comparing these behavioral states with oscillation states, stronger correlations emerged with pupil size and136

face motion than with running speed (Figure S5B; p = 0.0007, n = 25 mice). We attribute these differences137

to the dissociation between pupil size and running speed, particularly in cases where pupil dilation occurs, even138

when the mouse remains stationary (Figure S5A). These results suggest that facial movements serve as a reliable139

representation of the underlying internal states reflected in voluntary behavior, almost as good as the involuntary140

changes in pupil size (Crombie et al. 2024).141

Neuronal variability changes across oscillation states and visual hierarchy142

After defining the internal oscillation states and establishing their relation to behavior and arousal state, we143

wondered how spiking variability changes across these states. Across states, we observed distinct variations in144

population activity and synchronization levels (Figure 4A-C). Consistent with previous observations of attentional145

effect (Cohen and Maunsell 2009), increased spiking activity (av. % increase = 7.7 ± 1.6, mean ± sem, p = 6.3e-5,146

n = 25 mice) and decreased correlation (av. % decrease = 36.6 ± 3.4, mean ± sem, p = 1.3e-10, n = 25 mice)147

were typical of the high-frequency state. Moreover, the transition-state-like properties of the intermediate state148

were broadly consistent across various neuronal properties (Figure 4B, C) and behavior (Figure 3E). Bolstered149

by these findings, we evaluated three types of variability in single neurons to capture complementary aspects of150

neuronal variability: percentage of shared variance within a population, spike timing variability, and variability151

in spike counts across trials.152

Previous studies have shown that variability shared within a neuronal population can constrain information153

propagation between processing stages (Averbeck et al. 2006; Denman and Reid 2019; Kohn et al. 2016; Lin et al.154

2015). This is because shared variance within a population may not average out (Azeredo da Silveira and Rieke155

2021; Moreno-Bote et al. 2014), leading to a deterioration of the population’s coding capacity. To study how156

shared variability evolves across various internal states, we used factor analysis (FA) (Williamson et al. 2016)157

to partition the spike count variability into its shared and independent components (Figure 4D, top). Within a158

neuronal population, the shared component quantifies co-fluctuations in firing rates among individual neurons,159

while the independent component captures their Poisson-like variability. Percentage of shared variability was then160

evaluated as the ratio between each neuron’s shared and total variance. Consistent with previous findings that161

noted more synchronization within a population during low-arousal states (Mccormick et al. 2020; Zagha and162

McCormick 2014), the percentage of shared variability was highest during the low-frequency state (Figure 4D,163

bottom). In this state, fewer factors influenced the observed patterns of variation compared to the other states164

(number of FA components, SH = 21 ± 1, SI = 19 ± 1, SL = 16 ± 1, p = 1.8e-06). Neurons within V1 reported165

a larger shared component than neurons within other areas (Figure S6A). The percentage of shared variance166

decreased along the visual hierarchy in the high-frequency state, (Pearson correlation r = -0.85 with anatomical167

hierarchy score, p = 0.043, while the trends were not significant in the intermediate and low-frequency states168

(SL : Pearson’s r = -0.76, p = 0.08, SI : r = -0.59, p = 0.22). Compared to higher visual areas, neurons in early169

visual areas are known to be more modulated by the temporal features of visual stimuli (Matteucci et al. 2019,170

Siegle, Jia, et al., 2021). Thus, we attribute the observed decreasing trends to rapid variations in luminance or171

moving edges in the natural movie, that likely induce stronger temporally coherent activity within a population172

in lower visual areas than in higher visual areas.173

To study variability in spike timing, we measured the histograms of inter-spike intervals (ISI) and their174

associated coefficients of variation (Softky and Koch 1993). Coefficient of variation (CV) of each neuron was175

evaluated as the ratio between the standard deviation and mean of the ISI distributions. Therefore, the farther176

a neuron’s CV deviates from 0, the more irregular the neuron’s firing (Figure 4E, top left). Evaluating CV in177
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Figure 4: Neuronal variability and information encoding across states and the visual hier-
archy A, Raster plots (∼ 10s) showing the response of 25 units, each from V1 and AM, during two
trials in which the mouse was in different states. Each row represents the activity of the same single
neuron across the two trials. SH : High-frequency state (green), SI : Intermediate state (blue), and SL:
Low-frequency state (pink). B, State and area-specific population activity, z-scored and averaged across
all mice (pSH ,SI

= 1.4e-05, pSH ,SL
= 3.0e-07, pSI ,SL

= 0.90, n = 25). C, Average pairwise correlation
between averaged neuronal population activity in different visual areas as a function of oscillation states
(pSH ,SI

= 1.5, pSH ,SL
= 0.002, pSI ,SL

= 0.002, n = 25). D, Population shared variance. Top: Separation
of shared and independent variance using factor analysis (FA). FA partitions the spike count covariance
matrix into shared and independent components. Bottom: Percent shared variance plotted against the
anatomical hierarchy scores of the visual areas in each oscillation state, averaged across all units (pSH ,SL

= 0, pSI ,SL
= 5e-85, pSH ,SI

= 8.9e-6, n = 7609 units). Caption continued...
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Figure 4: E, Neuronal variability across time, quantified using the coefficient of variation (CV). Top-
left: Simulated distributions of inter-spike-intervals (ISI) for regular and Poisson-like firing. For a very
regular spike train, a narrow peak in the ISI histogram corresponds to CV ≈ 0, whereas Poisson-like
variability in the spike trains leads to an exponentially distributed ISI histogram with CV = 1 Top-
right: Distribution of ISIs in each oscillation state over a 2.5sec range. Bottom: CV along the visual
hierarchy (quantified as anatomical hierarchy scores) and across oscillation states, averaged across all
units (pSH ,SI

= 1.3e-17, pSH ,SL
= 7.1e-04, pSI ,SL

= 2.0e-06, n = 7609 units). F, Neuronal variability
across trials, quantified using Fano factor (FF). Top-left: Evaluation of FF as an average of the FF ratio
over non-overlapping windows of 150 ms with at least ten trials in each state Top-right: Mean spike
count versus variance overall times in each state for an example cell in V1. Bottom: FF along the visual
hierarchy and across brain states, averaged across all units (pSH ,SL

= 3.6e-15, pSI ,SL
= 1.8e-16, n =

7609 units). Pearson correlation with hierarchy scores excluding RL, SH : rp−RL = −0.93, pp−RL =
0.02;SI : rp−RL = −0.59, pp−RL = 0.3;SL : rp−RL = −0.35, pp−RL = 0.57 G, Information encoding
along the visual hierarchy across all oscillation states, quantified using mutual information (MI). Top:
For each trial, MI was evaluated between the population spike count matrix and a matrix of flattened
movie frames at time points corresponding to each state using a matrix-based entropy estimator. Bottom:
MI across the visual hierarchy and oscillation states averaged across all mice (pSH ,SI

= 0.03, pSH ,SL
=

2.2e-09, pSI ,SL
= 0.03, n = 25). Pearson correlation with hierarchy scores excluding RL, SH : rp−RL =

−0.92, pp−RL = 0.03;SI : rp−RL = −0.89, pp−RL = 0.04;SL : rp−RL = −0.73, pp−RL = 0.15. Error bars
in D-G represent 95% confidence intervals.

a state-specific manner, we found that neurons during the high-frequency state had broader ISI distributions178

than during other states (Figure 4E, top right), and accordingly, fired more irregularly in this state (Figure 4E,179

bottom). along the visual hierarchy, spike timing variability decreased irrespective of the internal state (Figure180

4E, bottom, SH : Pearson’s r with anatomical hierarchy score = -0.93, p = 0.006; SI : Pearson’s r = -0.97, p181

= 0.001, SL : Pearson’s r = -0.93, p = 0.007). Consistent with our expectation that V1 neurons more faithfully182

represent the features of the time-varying visual stimuli (Chaudhuri et al. 2015; Matteucci et al. 2019; Murray183

et al. 2014, Siegle, Jia, et al., 2021), we found that activity of V1 neurons was the most irregular.184

In visual system studies, trial-to-trial variability is commonly assessed using the Fano factor (FF, Fano 1947),185

which quantifies the ratio of variance to mean spike count across trials. An FF of 1 corresponds to a Poisson186

process, indicating that individual action potentials are generated randomly according to a constant firing rate. To187

ensure the relevance of our analysis to the visual stimulus, we evaluated FF of neurons with receptive field locations188

near the screen’s center (Kara et al. 2000; Softky and Koch 1993, see Methods, Figure 4F, top). Overall, single189

neurons in the visual cortex showed greater-than-Poisson variability with FF averaging around 1.47± 0.6 (mean190

± std). Specifically, spike counts in the low-frequency state showed the largest trial-to-trial variability, suggesting191

it is less modulated by visual stimuli. In contrast, trial-wise variability was comparable across the intermediate192

and high-frequency states (Figure 4F, bottom). Interestingly, neurons in RL reported the highest variability193

across visual areas (Figure 4F, bottom), where regardless of the animal’s internal state, these neurons generally194

reported higher FF (Figure S6C). Accordingly, excluding area RL from the analysis revealed a decreasing trend195

in the trial-to-trial variability along the hierarchy in the high-frequency state (SH : Pearson’s r with anatomical196

hierarchy score = -0.93, p = 0.02; SI : Pearson’s r = -0.59, p = 0.3, SL : Pearson’s r = -0.35, p = 0.57).197

Based on these results, we hypothesized that lower shared variance and trial-to-trial variability in spiking198

activity during the high-frequency state would improve stimulus encoding (Figure 4D, F). Meanwhile, the in-199

creased spike timing variability during this state could be due to better encoding of the temporal changes in200

the natural movie video stimulus (Figure 4E). We directly validated this hypothesis by evaluating the mutual201

information (MI) between the population spiking activity and the frames of the movie in a trial-by-trial manner202

in each state (Figure 4G, top). As expected, spiking activity in the high-frequency state was more informative203

about the stimulus than the lower-frequency state, with V1 neurons encoding most of that information (Figures204

4G, bottom, S6A). In line with the observed high FF measures (Figure 4F), neurons in RL reported the lowest MI205

with the stimulus (see Discussion). Again, omitting the low MI measures in RL, pixel-level information decreased206

along the hierarchy during the high-frequency state (SH : Pearson’s r with anatomical hierarchy score = -0.90, p207

= 0.038; SI : Pearson’s r = -0.86, p = 0.06, SL : Pearson’s r = -0.81, p = 0.09). While these findings confirmed208

the association between spiking variability and stimulus representation across states, they further suggest a loss209

of pixel-level information along the visual pathway.210

In summary, the high-frequency state is characterized by lower population shared variance, trial-to-trial vari-211

ability, and increased spike timing variability (Figure S4D-G). During this state, variability trends showed strong212

anti-correlations with the anatomical hierarchy scores such that V1 demonstrated the highest variability across213

the different visual areas in all three measurements. This could be due to a strong influence of the temporal pat-214

tern of sensory drive in early areas, which is validated by the trend of decreasing pixel-level information encoded215

in V1, especially in the high-frequency state.216
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HMM based predictor model217

Given the substantial influence of the internal oscillation states on spiking variability and sensory processing, we218

next sought to quantify the impact of different variability sources on neural dynamics during the different states.219

We built an HMM-based linear encoding model to predict changes in single-trial neural activity in each visual220

area (Figure 5A). The resulting HMM-predictor model allows for the quantification of state-specific contributions221

of stimulus and other source variables to the target single-trial neural activity. Deriving inspiration from an222

HMM-GLM framework (Ashwood et al. 2022), the HMM-predictor model has two essential pieces: an HMM223

governing the distribution over latent LFP states (identified in the preceding section) and a set of state-specific224

predictors governing the weight distributions over the input features. However, unlike the previously proposed225

HMM-GLM, the state sequences are pre-determined by the HMM, and we do not re-train the HMM model for226

optimized prediction. Finally, the model also produces a time-varying kernel (τ seconds long) for each feature,227

relating that variable to neural activity in the subsequent time bin (Figure 5A, panel 3).228

Our model considers an extensive array of variables that we classify into three categories: stimulus, behavior,229

and internal brain activity (Figure 5A, panel 1). Stimulus features include a set of higher (edges, kurtosis, energy,230

entropy) and lower-order (intensity, contrast) image features, and behavioral features include the complete set of231

movement variables determined in the previous section (see Figure 3). Under internal brain activity, the model232

includes both the averaged neuronal population activity from simultaneously recorded neighboring visual areas233

(that is, other than the target visual area) and the raw LFPs from different layers within the target area. Since234

model fits to linearly dependent input features are unreliable, we employed QR decomposition to systematically235

orthogonalize the input features (Mumford et al. 2015, see Methods).236

We derived two separate versions of the HMM-predictor model to study neural variability at multiple scales:237

a population model and a single-neuron model (Figure 5B). The single-neuron model predicted the single-trial238

firing rate of the target neuron, while the population model predicted the single-trial averaged neuronal population239

activity in an area. In the population model, the predictors were linear regressors of the input features, and the240

model was fit using Ridge regression to prevent overfitting (equation 16). The single-neuron model accounted for241

the non-linearity associated with spike generation, wherein the predictors were designed as Poisson regressors of242

the input features, and the model was optimized by maximizing a regularized log-likelihood function to prevent243

overfitting (equation 17). To evaluate how well the model captured the target neural activity, we computed the244

five-fold cross-validated R2 (cvR2, equation 18).245

State specific contributions to population-level variability246

The overall population model predicted 53.4 ± 6.6% (mean ± std, n = 25 sessions, Figure 5C) of the variance247

in the averaged neuronal population activity across the six visual areas. To evaluate the relative contributions248

from different source variables, we applied the model to individual sub-groups corresponding to each category.249

Interestingly, internal brain activity had the most predictive power (cvR2
I = 41.0±7.6%, mean ± std, p = 2.5e-11,250

n = 25 mice), higher even than the combined power of behavioral and stimulus features (cvR2
B+S = 30.1± 9.3%,251

mean ± std, p = 0.0005, n = 25 mice). Stimulus features predicted the variance in the averaged neuronal252

population activity better than behavioral features (cvR2
S = 22.8± 8.8%, cvR2

B = 18.9± 7.0%, mean ± std, p =253

0.009, n = 25 mice). These successive improvements in the explanatory power resulting from the inclusion of more254

sources are evident in the prediction traces shown in Figure 5D. It is worth noting that if single-neuron responses255

to external stimuli were completely independent, the contribution from stimulus features to population activity256

would be negligible. Nevertheless, the significant influence of stimulus features on population-level variability is257

suggestive of stimulus-related neuronal correlations within an area.258

The addition of internal brain activity to the combined model of behavioral and stimulus features increased259

the explained variance by almost 24% (∆r2F−(B+S) = 23.5 ± 10.2%, mean ± std, 5C). Considering that LFP260

and population activity inherently carry information about stimulus and behavioral features, potentially making261

part of their contributions redundant, we have deliberately orthogonalized these internal variables against the262

stimulus and behavior variables (Mante et al. 2013). This orthogonalization ensures that internal variables263

capture variance beyond what can be accounted for by stimulus and behavior variables alone. To understand the264

substantial increase in explained variance, we analyzed the contributions of internal brain activity to each state.265

We found that these variables largely increased the predictability during the low-frequency state (∆r2SL,F−(B+S) =266

39.0± 15.8%, mean ± std, Figure 5E, panel 1). Activity in this state was most poorly explained by the combined267

model of stimulus and behavioral features (cvR2
SL,(B+S) = 16.2± 11.5%, mean ± std, p = 8.3e-6, n = 25 mice).268

The combined model of stimulus and behavioral features was best at explaining variability in the high-frequency269

state, and accordingly, activity in this state showed a smaller improvement in its predictability on the inclusion270

of internal activity features (∆r2SH ,F−(B+S) = 14.3± 4.6%, mean ± std, p = 2.3e-6, n = 25 mice).271

Consistently, within-area LFPs and averaged population activity from the neighboring visual areas contributed272

more towards explaining the activity in the low-frequency state (p = 4.5e-6, p = 8.2e-13, respectively; n = 25 mice,273

Figure 5F). At the same time, both stimulus and behavioral features demonstrated increased predictive power274

during the high-frequency state (p = 0.003, p = 0.01, respectively; n = 25 mice), suggesting a switch in the network275

dynamics within the visual cortex. The current findings are also consistent with prior studies (Lovett-Barron et al.276

2017; McGinley et al. 2015; Speed et al. 2020), highlighting the role of slow-oscillatory waves in synchronizing277
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Figure 5: Relative contributions of the different sources to population-level variability A,
HMM-based prediction model to account for state-specific contributions of different sources of variability.
Design matrices were constructed using decorrelated features to train state-specific regressors. SH : High-
frequency state (green), SI : Intermediate state (blue), and SL: Low-frequency state (pink). B, HMM-
predictor models to study encoding in population and single neuron models. Population models included
a linear weighting of the input features, while in single neuron models, linear weighting was followed
by a non-linear exponential projection. C-G, Results from population model. C, Explained variance
for different categories of input feature groups, averaged across all mice obtained using five-fold cross-
validation. The box shows the first and third quartiles, the inner line is the median over 25 mice, and
the whiskers represent the minimum and maximum values. D, Averaged population responses overlaid
with model predictions from respective input feature groups. E, Comparison of predictions in different
(left) states and (right) visual areas prior to and post addition of internal brain activity. Top: Cross-
validated explained variance for each model. Bottom: Unique contribution of internal brain activity. F,
Contributions from single category models to explaining the variance in averaged neuronal population
activity in different states. G, Contributions from LFPs in the same area to explain the variance in
averaged neuronal population activity from (right) different layers and (left) in different visual areas.
H-K, Same as G (left), but for different input features.
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spiking activity during the low-frequency state (Figure 4C,D), thereby disrupting stimulus encoding in this state.278

Using the complete set of input features, we could predict about 61.1 ± 6.9% (mean ± std, n = 25 mice)279

of the variance in V1’s averaged neuronal population activity, the highest among all visual areas (Figure 5H).280

Although including internal brain activity did not differentially affect predictability across visual areas (p = 0.12,281

n = 25 mice, Figure 5E, panel 2), contributions from its sub-components revealed interesting differences. Firstly,282

averaged population activity from neighboring areas explained more variance than within-area LFPs (p = 1.5e-9,283

n = 25 mice, Figure 5F). Secondly, their across-area prediction showed reversed trends. While LFPs explained284

significantly more variance in V1 than other visual areas (Figure 5G, panel 1), averaged population activity285

explained significantly more variance in AM (Figure 5I). Lastly, the predictive power of LFPs varied across the286

cortical depth, wherein layer 4 (L4) LFPs contributed more to the variance in the averaged neuronal population287

activity than LFPs in other layers (Figure 5G, panel 2).288

When disregarding the influence of internal states, stimulus features did not significantly differ in their pre-289

dictive power across areas (Figure 5J, p = 0.13), even at the level of single features (Figure S8A, B, p ∈ [0.33,290

1]). However, state-specific analysis revealed pronounced differences in the high-frequency state (Figure S8D,291

F). In this state, different stimulus features also showed distinct predictive powers indicating heightened sen-292

sitivity to stimulus changes (Figure S8C, E). Specifically, higher-order stimulus features (edges, kurtosis, and293

energy) reported greater predictive power than stimulus contrast and intensity. Finally, facial movements made a294

more substantial contribution to the averaged neuronal population activity compared to other behavioral features295

(Figure S9A, C, p = 0.02, n = 25 mice), consistent with our observations in Figure 3F.296

State specific contributions to single-neuron variability297

To explain the single-trial activity of individual neurons, we replaced the predictor in the HMM-predictor model298

with a GLM. This allowed us to systematically quantify the contributions from the different sources to single-299

neuron variability in each trial. Since a GLM predicts the conditional intensity of the spiking response, we300

evaluated our model performance against the rate functions of individual neurons obtained after smoothing the301

spike counts with a Gaussian filter (s.d. 50 ms). To appropriately identify their variability sources, neurons were302

further selected by a minimal firing rate (> 1 spikes/s in all states) and receptive field locations, along with the303

standard quality control metrics of the dataset (see Methods, Siegle, Jia, et al., 2021). After filtering, n = 3923304

units remained across all mice and were analyzed using the GLM model.305

Overall, the model was able to explain an average of cvR2
F = 26.7 ± 13.5% (mean ± std, n = 3923 units) of306

the total variance of single-trial activity across all neurons (Figure 6A) such that individual contributions from307

different sources showed a reversed trend compared to the population model. While the variance in the averaged308

neuronal population activity was best explained by internal brain activity, single neurons were best explained by309

stimulus and behavioral features (cvR2
B+S = 25.6±13.2%, mean ± std, n = 3923 units). Across all input features,310

stimulus features were most predictive of single-neuron activity (cvR2
S = 19.8 ± 13.6%, mean ± std), and LFPs311

were the least predictive (cvR2
LFP = 5.6± 6.4%, mean ± std). However, the state-wise contribution trends of the312

individual input features were similar to that in the population model, such that neural activity was the most313

predictive during the high-frequency state (Figure 6B). Across areas, single neuron variability was best explained314

along the anterolateral path (LM, AM, and AL, cvR2
F = 26.2 ± 0.9% (mean ± std), Figure S10, p = 2.5e-05).315

To aid visualization of the model predictions, we applied Rastermap (Stringer et al. 2019) to the spike counts316

of neurons, creating a 1-D embedding of the neural activity that captures their non-linear relations. Sorting the317

neurons by their eigenvalues revealed transient changes in the neural ensemble that were captured solely by the318

stimulus features (Figure 6D). Other features were less discerning and captured only the broad changes in the319

firing patterns.320

Many features can impact an individual neuron’s variability, yet a specific feature often takes precedence.321

Accordingly, we grouped neurons based on the feature with the highest unique predictive power, explaining at322

least 10% of the unit’s spiking variance (cvR2
F − SD). This categorization resulted in five distinct groups: one323

for each input feature and an additional group comprising neurons where no feature explained more than 10%324

of their variance. Examination of neuron distribution across visual areas revealed that the fraction of neurons325

best predicted by stimulus features peaked in V1, decreasing along the hierarchy (Figure 6E, Pearson correlation326

with hierarchy score, rp−RL = −0.91, pp−RL = 0.03). Conversely, fraction of behavior-related neurons increased327

along the hierarchy (rp = 0.89, pp = 0.04) such that ∼ 15 − 20% of neurons in areas between RL and AM were328

best predicted by behavior (RL: 21.5%, AL: 15.8%, PM: 15%, AM: 16.6%). Notably, despite the rise of behavior-329

related neurons in higher regions, the majority of neurons in each area were best explained by stimulus features330

(Figure 6E). Similar to behavior, number of neurons affected by neural activity from the neighboring areas also331

increased along the hierarchy (rp−RL = 0.95, pp−RL = 0.01). These findings indicate a rise in functional diversity332

among neurons ascending the visual hierarchy.333

Next, we quantified variability based on the subgroups determined by the contributing features, employing334

metrics from the previous section. On average, neurons best explained by stimulus showed Fano factor (FF) values335

below 1, indicating sub-Poisson variability. These neurons also reported the lowest shared variance with other336

neurons in the population. In contrast, neurons primarily influenced by the averaged population activity from337

neighboring visual areas shared a large percentage of their variance with neurons in the target area, suggesting338

their involvement in internal synchronization. These neurons along with behavior-related neurons exhibited339

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.03.587408doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587408
http://creativecommons.org/licenses/by-nc-nd/4.0/


CA B

*   *
  *

*   *
  *

  *
  *

  *
  *

*   *
  *

Time (s)

spiking activity full model stimulus model
other area population 

activity model behavior model LFP model

Model Predictions

E Maximally contributing 
feature distribution 

Other area 
population 
activity 

Stimulus

Behavior
Same area
LFPs
Max. r2  < 0.1

Neuronal variabilty in sub - populations of neuronsF

Predictor model: Generalized linear model 
Y = [y1 ... yT]: Single-neuron ac�vity
τ  = 1 second

D

M
ax

im
al

ly
 c

on
tr

ib
ut

in
g

fe
at

ur
e 

**
***

*

**
***

*

**
*

**
*

ra
te

 (s
pk

/s
)

Figure 6: Relative contributions of the different sources to single neuron variability A, Mean
explained variance for different categories of input features, averaged across n = 3923 neurons and ob-
tained using five-fold cross-validation. The box shows the first and third quartiles, the inner line is the
median over all neurons, and the whiskers represent the minimum and maximum values. B, Contribu-
tions from single category models to explaining single-neuron variability during different oscillation states.
SH : High-frequency state (green), SI : Intermediate state (blue), and SL: Low-frequency state (pink).
C, Explained variance of all units in each input feature category. D, (First panel) Neuronal activity,
with neurons sorted vertically by a manifold embedding algorithm, Rastermap. (Panels 2 - 6) Prediction
of neuronal activity (n = 350 units, best explained units across mice and areas) from respective input
feature categories. E, Proportion of units in each area with maximal explained variance from respective
input feature categories. No units were maximally explained by LFPs from the same area. F, (left to
right) Variability across trials (Fano factor), variability across time (coefficient of variation), and shared
variability of neurons grouped according to their maximally contributing feature.

highest spike timing variability. It is important to emphasize that not all neurons encoded a single feature; 29% of340

neurons were well-predicted by multiple sources with cvR2 > 10% across all categories of input features: stimulus,341

behavior, and internal activity (Figure 6C). A thorough investigation of variability within this category of pan-342

modulated neurons would merit future research. Finally, the explained variance of fast spiking cells significantly343

surpassed that of regular spiking cells, except when stimulus features were used as input features, therefore,344

suggesting a greater involvement of regular spiking cells in stimulus encoding (Figure S10F-K, full model: p =345

5.32e-11, behavior: p = 9e-48, internal activity: p = 0, stimulus: p = 0.05).346
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3 Discussion347

Our observations provide a comprehensive description of the non-stationary aspects of spiking variability in the348

visual cortex as the brain traverses through distinct oscillation states. We characterized this variability along349

three dimensions: variability across trials (Kara et al. 2000), variability in spike times (Softky and Koch 1993),350

and shared variance within a population (Williamson et al. 2016). By utilizing cortical LFPs to define different351

internal oscillation states, we found that each state captured a distinct profile of spiking variability. Using the352

state fluctuations as a temporal backbone, we incorporated the non-stationary properties of neuronal variability353

into an HMM-based encoding model. The linear encoding model was able to partition and evaluate the relative354

contributions from three different sources of variability: visual stimulus, behavior, and internal brain dynamics,355

explaining single-neuron variability with 27% and averaged population activity with 53% accuracy. Each source356

influenced spiking variability in a state and area-specific manner. Overall, our study not only underscores the357

importance of addressing the non-stationary dynamics of spiking variability, but also emphasizes the imperative358

to account for the dynamic influence of the internal and external factors on stimulus representation (Figure 7).359

Relative influence of different sources on neuronal variability360

Identifying and locating the different sources influencing neural variability poses a significant challenge in systems361

neuroscience (Goris et al. 2014; Renart and Machens 2014). Previous research has emphasized the significance362

of internal brain activity in accounting for neuronal variability (Carandini 2004; Schölvinck et al. 2015; Shadlen363

and Newsome 1998). While these studies did not consider variability induced by externally observable task-364

and behavior-related variables, recent investigations have predominantly focused on this latter category of input365

features (Musall et al. 2019; Recanatesi et al. 2022; Steinmetz et al. 2019; Stringer et al. 2019). In this study,366

we adopt a comprehensive approach by integrating contributions from both internal brain activity and externally367

observable variables to understand neuronal variability.368

We considered a two-fold contribution from internal brain activity. Firstly, utilizing brain states defined369

by internal oscillatory rhythms as a temporal framework, we were able to associate the various dynamics of370

spiking variability with these internal states. Secondly, we incorporated averaged neuronal population activity371

from each neighboring area and LFPs as input features into the HMM-based encoding model. These variables372

played a significant role in explaining neural variability, primarily contributing to activity in the low-frequency373

state. Consistent with previous findings (Carandini 2004; Schölvinck et al. 2015), internal variables explained374

approximately 40% of the total variability of averaged neuronal population activity within an area, even surpassing375

the variance explained by the combined model of stimulus and behavioral features by 11% (cvR2
I - cvR2

B+S). At the376

level of single neurons, contributions from internal brain activity, although relatively small, remained statistically377

significant, explaining around 11% of the total variance. However, this was nearly 14% (cvR2
B+S - cvR2

I) less than378

the variance explained by the combined model of stimulus and behavioral features.379

Recent progress in behavioral video analysis, computational modeling, and large-scale recording techniques380

has highlighted the impact of movement-related variables on neural activity across the cortex (Musall et al. 2019;381

Steinmetz et al. 2019; Stringer et al. 2019). Our observations are consistent with these findings. Behavior-382

related variables explained up to ∼ 20% of the averaged neuronal population activity and ∼ 12% of single-neuron383

variability in the visual cortex. Moreover, the influence of behavior becomes more pronounced in the high-384

frequency state (Figures 5C,6A, 7) and as one ascends the visual hierarchy, entraining a larger proportion of the385

neural population (Figure 6E). However, our findings diverge from those reported in Musall et al. 2019, which386

found that uninstructed movements exerted a greater influence on V1 neural activity than a visual stimulus. We387

attribute this difference to three reasons: first, our mice are passively viewing the screen without engaging in388

a behavioral task; second, our naturalistic movie stimulus may engage a broader array of neurons compared to389

the static, flashed stimuli used in previous research; third, our recording captures single-unit spiking activity,390

contrasting with previous wide-field calcium imaging. In addition to behavior, these differences underscore the391

importance of recording methodologies, experimental conditions and stimuli, prompting a closer examination of392

the specific factors influencing single-trial neural activity in diverse contexts.393

Despite large variability in spiking activity, neuronal populations exhibit a remarkable ability to robustly394

encode information across different brain regions (Harris et al. 2019; Jia et al. 2022; Perkel and Bullock 1968).395

Our results suggest this is state-dependent. A clear pattern emerges throughout our analyses: population dy-396

namics during the high-frequency state are the most effective in representing stimulus information, while stimulus397

features weakly modulate activity in other states ((Figures 4G, 5F, 6B), 7). While several lines of studies have398

indirectly confirmed this state-dependence of information encoding either through reports of task performance399

or via investigations under artificially induced states of anesthesia (Haider et al. 2007; Mccormick et al. 2020;400

Poulet and Petersen 2008; Schölvinck et al. 2015), our findings directly quantify and describe this dependency.401

Specifically, we find that spiking activity in the high-frequency state has the lowest shared variance, lowest trial-402

to-trial variability, and the highest spike timing variability (Figure 4). These characteristics of single-neuron403

activity may result from enhanced encoding of various temporal and spatial features of the time-varying natural404

movie stimulus during the high-arousal state (Figures 5F, 6B). In contrast, the dominance of slow oscillatory405

activity in low-frequency state, coupled with high shared variance, trial-to-trial variability, and more regular fir-406

ing, appears to reflect internal dynamics that disrupt the accurate representation of stimulus information. We407
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posit that this observed correlation between heightened sensory encoding capacity and increased arousal during408

the high-frequency state may arise from the mice’s innate survival mechanism, leading them to enhance visual409

information intake while in a state of heightened alertness or running.410
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Figure 7: Illustration of the dynamic nature of neuronal variability and sensory encoding A
Illustration of variance explained (red line) in neural activity by stimulus (z-axis), behavior (y-axis) and
internal dynamics (x-axis), along with their respective associations with internal state, as delineated by
the basins of attraction in the energy landscape of neural activity (gray line). The interplay between
internal and external factors collectively shape the time course of neuronal variability, influencing sensory
coding. States serve as a temporal framework underlying the dynamic nature of these interactions. B
Graphical depiction of state transitions. Transitions between low and high-arousal states occur via an
intermediate state, with the least amount of time spent in this intermediary phase. In mice, each state
typically only lasts for a short duration of 1-2 seconds. Transition probabilities are depicted by the
thickness of arrows, while the duration of each state is indicated by the size of the circles. C Illustration
of state-specific profiles of spiking variability (Fano factor and shared variance). Left panel: Neurons
in the high arousal state demonstrate improved stimulus encoding characterized by lower trial-to-trial
variability and lower shared variability within a population. In this state, stimulus induced variability
gradually decreases along the visual hierarchy (Harris et al. 2019). Right panel: In low arousal states,
stimulus effects are hindered by internal dynamics that predominantly influence the observed neuronal
variability. Neuronal activity in this state is highly synchronous within and across areas and demonstrates
higher trial-to-trial variability.

Sensory processing along the visual cortical hierarchy411

Given the hierarchical organization of the visual cortex (Siegle, Jia, et al., 2021,Harris et al. 2019), the response412

variance of a sensory neuron can potentially limit the amount of stimulus information available to downstream413

circuits (Denman and Reid 2019, Figures 4G, 7). While past studies have shown the effects of pair-wise correlations414

on information encoded by a neuronal population (Averbeck et al. 2006; Kohn et al. 2016; Moreno-Bote et al.415

2014), a more comprehensive population-level perspective is essential to understanding the brain’s correlational416

structure (Recanatesi et al. 2022; Shea-Brown et al. 2008; Trousdale et al. 2012). Here, we applied shared variance417

(Williamson et al. 2016) as a generalization of the pair-wise correlations between single neurons extended to an418

entire population. Notably, we observed a decrease in the percent of shared variance along the visual hierarchy419

(Figure 4D). While this decline might imply the introduction of independent noise at subsequent stages of signal420

processing, it could alternatively result from the increased diversity of neurons influenced by factors other than421

the stimulus itself (Figure 6F). The high variance shared across neurons in V1 can likely be attributed to V1422

comprising the largest proportion of neurons exhibiting strong, time-locked responses to the temporal dynamics of423

stimulus features (Figure 6F, Churchland et al. 2010; Matteucci et al. 2019). Our findings provide further support424
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for this notion, particularly through the observation that neurons in V1 reported high spike-timing variability,425

likely corresponding to the variance induced by a constantly changing stimulus(Figure 4E). Consistently, LFPs426

have a more pronounced influence on averaged population activity in V1 in comparison to other visual areas427

(Figure 5G). This suggests that the collective synaptic inputs into V1, represented by LFPs in the area, may428

entrain a larger population in V1 than in other areas.429

Previous studies have indicated that trial-to-trial variability (Fano factor) increases as information propagates430

up along the visual pathway from the retinal receptors to the primary visual cortex (Bair 1999; Kara et al. 2000;431

Schölvinck et al. 2015). Our observations mirror this trend in the visual cortex when mice were exposed to432

full-field light flashes, revealing an increase in trial-to-trial variability along the cortical hierarchy (Figure S6D).433

However, in response to natural movies, trial-to-trial variability decreased along the visual cortical hierarchy434

(Figure 4F). We attribute this decrease in variability to the heterogeneous properties of a natural movie frame435

where, in awake mice, eye movements (even small saccades) across the frame could elicit more variable neuronal436

responses across trials in early visual areas with smaller receptive fields (Gur et al. 1997). Lastly, it is important437

to note the variability properties of neurons in the rostrolateral visual area (RL), which do not always follow the438

visual hierarchy trends. This is especially true when considering trends related to stimulus encoding, such as439

trial-to-trial variability and mutual information (Figures 4F,G, 6E, S6C, D). We attribute this to two reasons.440

Firstly, since RL is located at the border of the visual and primary somatosensory (S1) cortices, the functional441

specialization of neurons in RL is likely more diverse than in other visual areas. This is reflected in our findings442

where RL had the smallest proportion of neurons influenced by stimulus features and the largest proportion of443

neurons with low explained variance (Figure 6F). Secondly, due to the retinotopic center of RL being situated444

on the boundary between RL and S1 (Olcese et al. 2013), it is often challenging to target its precise retinotopic445

center (de Vries et al. 2020).446

Dynamic shifts in neuronal variability447

The dynamic nature of neuronal variance across time has been consistently demonstrated in theoretical and empir-448

ical analyses (Churchland et al. 2011; Goris et al. 2014; Stein 1965). Here, we specifically quantify the magnitude449

of stimulus-driven neuronal variability associated with internal states. Our findings show that, during passive450

viewing, mice typically persist in a specific state for an average duration of 1.5 ± 0.1 seconds, indicating that451

state-dependent neuronal variability undergoes changes within seconds (Figures 2F, 7). The state sequences reveal452

a smooth transition of neuronal variability between distinct variability profiles, passing through an intermediate453

state (Figures 2G, 4, 7). Moreover, each state constitutes a unique composition of sources that influence neu-454

ronal variability (Figures 5F, 6B). These rapid shifts in source composition across states arise from the complex455

interactions between non-stationary source variables, collectively contributing to the non-stationarity of neuronal456

variability (Figure 7).457

These findings offer additional insights into the dynamic properties of neuronal variability, providing impor-458

tant constraints for theoretical modeling of stimulus-driven variability. Firstly, the dynamically changing source459

composition indicates that the responsiveness of a neuronal population to sensory input varies over time, chal-460

lenging the assumption of a constant stimulus contributing to the responsiveness of a sensory system. Secondly,461

accounting for the distinct variability profiles associated with different internal states can specifically address462

the non-stationary stimulus-encoding capability of neuronal populations. Lastly, integrating state fluctuations as463

a temporal framework can enhance our understanding of the network dynamics contributing to non-stationary464

neuronal variability.465

Future directions466

Considering the differences in stimulus representation across states, we expect these states to similarly influence467

the accurate transmission of sensory-related information. Interestingly, it has been shown that artificially inducing468

synchronized low-frequency oscillations in area V4 of the primate visual cortex impairs the animal’s ability to469

make fine sensory discriminations (Nandy et al. 2019). Studies in mice have also found that slow-oscillatory activ-470

ity in key-sensory areas, such as the somatosensory, visual, and auditory cortex, significantly reduces their ability471

to quickly and accurately respond to sensory stimuli (Bennett et al. 2013; Crochet and Petersen 2006; McGinley472

et al. 2015). These studies suggest a disruptive impact of the local slow oscillatory activity on downstream cortical473

processing. Our current findings indicate that during the low-frequency state, reduced stimulus influence on spik-474

ing activity diminishes area-wise differences in variability along the visual hierarchy (Figures 4, 7). While shared475

variance and trial-to-trial variability increase in the low-frequency state, their trend across the hierarchy flattens476

in this state, suggesting a lack of differentiation in how these regions respond to sensory-related information. To477

understand these effects, our future investigations will focus on network properties and information propagation478

as the brain transitions through the various oscillation states.479

In this study, we make use of the controlled yet dynamic structure of the passive viewing design to trace480

neuronal variability across discrete oscillation states in awake mice. While our discrete characterization of brain481

states provides a straightforward interpretation of neural activity, recognizing the possibility of continuous state482

changes (such as a continuum of pupil size or network activity changes) is vital for exploring the full spectrum483

of neural responses in awake, behaving animals. Additionally, to fully characterize neuronal variability and its484
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influence on information processing in the cortex, investigating neural activity during active tasks is essential.485

Recent studies have shown that a subject’s engagement during an active task varies drastically from trial to trial,486

playing out through multiple interleaved strategies (Ashwood et al. 2022; Piet et al. 2023; Zhuang et al. 2021).487

While the tools in this study can help identify variables that promote task engagement, they do not elucidate the488

underlying mechanisms causing state transitions. Understanding these dynamics entails a thorough investigation489

of unit activity in the subcortical and dopaminergic regions of the brain.490

Our observations, combined with existing studies on spiking variability, suggest that cortical state acts as a491

key determinant of the variability seen in the cortex. By offering a comprehensive view of this variability, we have492

been able to directly study both the sensory and non-sensory aspects of neuronal responses in the visual cortex. It493

is evident that spiking variability in the cortex transcends mere ‘neural noise’, and explaining neuronal variability494

by partitioning it into different origins can help us understand its influence on information representation and495

propagation in the brain, and ultimately resolve its computational contribution to behavior.496

4 Methods497

Data Collection498

The data analyzed and discussed in this paper are part of the publicly released Allen Institute Brain Observatory499

Neuropixels dataset (n=25 mice) (Siegle, Jia, et al., 2021). Neural recordings used Neuropixels probes (Jun et al.500

2017) comprising 960 recording sites. Either 374 for “Neuropixels 3a” or 383 for “Neuropixels 1.0” were configured501

for recording. The electrode sites closest to the tip formed a checkerboard pattern on a 70 µm wide x 10 mm long502

shank. Six Neuropixels probes were inserted at the shallowest 2 mm and at the deepest 3.5 mm into the brain503

for each recording. These requirements ensured adequate recordings of the cortex while preventing any brain504

damage. To ensure that the probes were recording from functionally related cells in each visual area, retinotopic505

centers were determined and targeted accordingly. Targeting the cortical visual areas, AM, PM, V1, LM, AL,506

and RL, was guided by the angle of approach of the probe, as well as the depth of functionality of the imaging507

boundaries. All procedures were performed according to protocols approved by the Allen Institute Institutional508

Animal Care and Use Committee under an assurance with the NIH Office of Laboratory Animal Welfare.509

The Open Ephys GUI was used to collect all electrophysiological data. Signals from each recording site were510

split into a spike band (30 kHz sampling rate, 500 Hz highpass filter) and an LFP band (2.5 kHz sampling rate,511

1000 Hz lowpass filter). Spike sorting followed the methods outlined in Jia et al. 2022. Briefly, the spike-band512

data was subject to DC offset removal, median subtraction, filtering, and whitening before applying the Kilosort2513

MATLAB package (https://github.com/MouseLand/Kilosort) for spike time identification and unit assignment514

(Stringer et al. 2019). Detailed information about the complete experimental design can be found in Durand et al.515

2022.516

Statistics and data analyses517

For all analyses, Python was used as the primary programming language. Essential analytical tools utilized include518

Scipy (Virtanen et al. 2020) and Scikit-learn (Pedregosa et al. 2011). Error bars, unless otherwise specified, were519

determined as the standard error of the mean. For comparisons across units (n = 7609 units after QC filtering,520

and n = 3923 units post-RF filtering), mice (n = 25), or states (n = 3), we used a one-way ANOVA for Gaussian-521

distributed metrics and the rank sum test for non-Gaussian distributed metrics. In cases of high subject-to-subject522

variability, we used a paired t-test. Bonferroni correction was applied for multi-group comparisons. To determine523

if a distribution significantly differs from zero, we used a one-sample t-test. To evaluate the similarity to the524

previously established anatomical visual hierarchy in mice (Harris et al. 2019), we computed the correlation525

between our measured variable and the anatomical hierarchy score (V1: -0.50, RL: -0.14, LM: -0.13, AL: 0.00,526

PM: 0.12, AM: 0.29), and Pearson’s correlation was applied to estimate the significance of correlation.527

Visual Stimulus528

Custom scripts based on PsychoPy (Peirce, 2007) were used to create visual stimuli, which were then presented529

on an ASUS PA248Q LCD monitor. The monitor had a resolution of 1920 x 1200 pixels and a refresh rate of 60530

Hz, measuring 21.93 inches wide. The stimuli were shown monocularly, with the monitor positioned 15 cm from531

the right eye of the mouse. The visual space covered by the stimuli was 120◦×95◦ before any distortion occurred.532

Each monitor used in the experiment was gamma corrected and maintained a mean luminance of 50 cd/m2. To533

accommodate the mouse’s close viewing angle, spherical warping was applied to all stimuli to ensure consistent534

apparent size, speed, and spatial frequency across the monitor from the mouse’s perspective.535

Receptive field mapping536

The receptive field locations were mapped with small Gabor patches randomly flashed at one of 81 locations537

across the screen. Every degree of drifting grating (3 directions: 0◦, 45◦, 90◦) was characterized by a 2 Hz, 0.04538
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cycles with a 20◦ circular mask. The receptive field map (RF) for an individual unit is defined as the average 2D539

histogram of spike counts at each of the 81 locations, where each pixel corresponds to a 10◦ × 10◦ square.540

Stimuli for passive viewing541

The mice were exposed to various types of stimuli during the experiment, including drifting gratings, natural542

movies, and a flashes stimulus. The gratings stimulus included 4 directional gratings that were repeated 75543

times at a frequency of 2 Hz. As for the natural movies, they were divided into 30-second clips, and each clip was544

repeated 30 times as a block. To introduce variability, there were an additional 20 repeats with temporal shuffling.545

Lastly, the flashes stimulus included a series of dark or light full field image with luminance = 100cd/m2.546

Quality control metrics547

All single-neuron analyses (Figures 4, 6) were performed on neurons that successfully met three essential quality548

control thresholds: presence ratio ( > 0.9), inter-spike interval violations (< 0.5) and amplitude cut-off (< 0.1).549

Specific details of these metrics can be found in (Siegle, Jia, et al., 2021). These metrics were implemented550

to prevent the inclusion of neurons with noisy data in the reported analyses, considering both the physical551

characteristics of the units’ waveforms and potential spike sorting challenges. For single-neurons analyzed in552

Figure 6, a tighter threshold on presence ratio ( > 0.95) was incorporated to avoid inflated values of prediction553

accuracy. Additionally, analyses in Figures 4F and 6 were filtered for neurons with receptive fields positioned554

at least 20 degrees away from the monitor’s edge. This criterion was incorporated to facilitate a meaningful555

comparison of the relative contributions from different sources of variability.556

Local field potentials and time-frequency analysis557

Prior to constructing the hidden Markov model (HMM), we identified appropriate frequency ranges in the LFPs.558

To evaluate their power spectra, we applied short time-Fourier transform (STFT) on single channels using a Hann559

window of size ∼ 800 ms such that consecutive windows overlapped over ∼ 400 ms. Z-scoring the power spectrum560

at each frequency revealed LFP modulations in distinct frequency bands (Figure 2B). Further informed by the561

literature on LFPs in the mouse cortex (Akella et al. 2021; Buzsáki and Draguhn 2004; Fries 2015; Jia and Kohn562

2011; Lundqvist et al. 2016), the following frequency ranges were selected from the LFP spectrum: 3-8 Hz (theta),563

10-30 Hz (beta), 30-50 Hz (low gamma), and 50 - 80 Hz (high gamma). To filter the LFPs, we constructed four564

IIR Butterworth filters of order 11, each corresponding to the above frequency ranges. Finally, envelopes of the565

filtered LFP signals, obtained via the Hilbert transform, were supplied as inputs to the HMM.566

The input features of the HMM model incorporate LFPs from across the cortical depth. To determine the567

corresponding layer of each LFP channel, we first estimated the depth of the middle layer of the cortical column.568

Similar to methods summarized in Stoelzel et al. 2009 and Jia et al. 2022, we applied current source density569

(CSD) on the LFPs within the 250 ms interval post-presentation of the flashing stimulus. To evaluate the570

CSD, we calculated each recording site’s average evoked (stimulus-locked) LFP response (s) and duplicated the571

uppermost and lowermost LFP traces. Next, we smoothed the signals across sites as shown in equation 1, where572

r is the coordinate perpendicular to the layers, and h is the spatial sampling distance along the electrode. Finally,573

the CSD mapping was obtained as the second spatial derivative of the LFP response (equation 2, Figure S1D,574

right). The CSD map can approximately dissociate the current sinks from current sources, respectively indicated575

as downward and upward deflections in the density map.576

s(r) =
1

4
(s(r + h) + 2s(r) + s(r − h)) (1)

D =
1

h2
(s(r + h)− 2s(r) + s(r − h)). (2)

To facilitate visualization, we used 2D Gaussian kernels (σx = 1, σy = 2) to smooth the CSD maps. We577

identified the location of the input layer based on the first appearance of a sink within 100 ms of the stimulus578

onset. We then designated the center channel of the middle layer (L4) as the input layer and marked eight channels579

above and below it as L4. All channels above the middle layer were classified as superficial layers (L2/3), while580

all channels below the middle layer but above the white matter were categorized as deep layers (L5/6). Lastly,581

for each mouse, we validated the layer classification against the spectral decomposition of the LFPs across depth582

(Figure S1D).583

Identification of internal oscillation states - Hidden Markov model584

We used a hidden Markov model (HMM) to detect latent states or patterns from envelopes of band-passed LFP585

signals. According to the model, network activity along the visual hierarchy is in one of M hidden “states” at each586

given time. Each state is a vector, S(a,d), constituting a unique LFP power distribution over all depths (d = [L2/3,587

L4, L5/6]) across six visual areas (a = [V 1−AM ]) in the cortex (emission matrix, Figure S3A). In an HMM-based588
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system, stochastic transitions between states are assumed to behave as a Markov process such that the transition589

to a subsequent state solely depends on the current state. These transitions are governed by a “transition”590

probability matrix, Tm,n, whose elements represent the probability of transitioning from state m to state n at591

each given time (Figure S3B). We assumed the emission distribution to be a Gaussian distribution over the power592

signals to train a single HMM for each mouse, yielding the emission and transition probabilities between states.593

To match the frame rate of the natural movie, we averaged the power signals within non-overlapping windows of594

30 ms. Each HMM was optimized using the Baum-Welch algorithm with a fixed number of hidden states, M.595

In an HMM, the number of states, M, is a hyperparameter. To find the optimum number of states (M∗)596

per HMM, we optimized the 3-fold cross-validated log-likelihood estimate, penalizing the metric if the inferred597

latent states were similar. The correction for similarity was imperative to determining distinct states with unique598

definitions. ‘Similarity’ between the states was quantified as the top eigenvalue of the state definition matrix599

evaluated as the mean power across the identified frequency ranges (number of states × number of frequency600

bands, Figure 2C, right). The top eigenvalue represents the maximum variance in the matrix. In such a case,601

smaller values indicate lower variance in the definition matrix and, therefore, highly collinear state definitions.602

To apply this correction, we divided the log-likelihood estimate with the top eigenvalue where both metrics were603

individually normalized between -1 and 1 over a range of M ∈ [2, 6]. Normalization was performed to allow equal604

weighting of the two metrics. The log-likelihood estimate increases with the number of states until reaching a605

plateau, while the value of the top eigenvalue decreases. A ratio between the two metrics consistently pointed to606

M∗ = 3 optimal states across all mice (Figure 2C).607

To further validate our model selection, we used the k-means algorithm as a control to cluster all the input608

LFP variables between k = 2 and k = 6 clusters (Figure S2A). To determine the number of clusters (states),609

we applied the Elbow method to the percentage of variance explained by each clustering model. The percentage610

of explained variance is the ratio of the variance of the between-cluster sum of squares to the variance in the611

total sum of squares. Applying the elbow method to each mouse, we selected the number of clusters, k∗, for612

which the incremental increase in the explained variance had the largest drop (the point of largest curvature)613

before the plateau (Satopaa et al. 2011). In most mice, the LFPs optimally clustered into three or four separate614

groups, displaying a remarkably similar power distribution obtained via the HMM. As a final sanity check, we615

applied dimensionality reduction to the input LFP variables using UMAP (Uniform Manifold Approximation and616

Projection, McInnes et al. 2018) and evaluated the silhouette scores (sklearn.metrics.silhouettescore) on the617

reduced input matrix based on the HMM states. The distribution of the silhouette scores across all mice further618

confirmed our model selection (Figure S2B).619

The input LFP variables supplied to the HMM model include LFPs from one randomly selected channel620

from each layer of the cortical column: L2/3, L4, and L5/6, across all six visual area. This approach aims to621

achieve smoother states by reducing the number of input variables provided to the HMM model while ensuring622

representation across the cortex. We validated this input selection using two controls. First, we tested if latent623

states varied across visual areas. For this, we estimated HMM states using LFPs from each individual area (Figure624

S1B). Second, we conducted a randomized control test for each session, running 20 independent HMM fits with625

randomly selected LFP channels from each layer (Figure S1E). The initial guesses for emissions and transition626

probabilities were kept constant across different runs. Subsequently, for each test, we evaluated the pairwise627

correlations between state predictions for each pair of the HMM models. The correlation coefficients averaged628

around 0.54 ± 0.04 (mean ± sem, n = 25 mice, Figure S1C) for the area-wise control and around 0.75 ± 0.04629

(mean ± sem, n = 25 mice, Figure S1F) for the layer-wise control, indicating the robustness of the determined630

states against area and channel selection.631

Behavioral features632

Two synchronized cameras were used to record the mice: one focused on the body at a 30 Hz sampling rate, and633

the other an infrared camera focused on the pupil at a 60 Hz sampling rate. Running wheels were equipped with634

encoders to measure distance and speed of the mouses’ running during the data acquisition session. Behavioral635

variables used in regression analyses were quantified using universal mouse models constructed using DeepLabCut636

(Nath et al. 2019, Siegle, Jia, et al., 2021) for pupil size changes and using SLEAP (Pereira et al. 2022) for limb-637

to-tail movements. SLEAP, a modular UNet-based machine learning system, was trained to recognize up to 7638

tracking points on the mouse’s body, including the body center, forelimbs, hindlimbs, and the proximal and distal639

ends of the tail (Figure 2C). However, the right forelimb was frequently occluded from view and subsequently640

dropped from our analyses. We trained the model on a combined 1311 labeled frames from across all mice,641

with annotations ranging from 10 to 300 frames per mouse. Utilizing SLEAP’s human-in-the-loop workflow, we642

alternated between labeling and training the model to achieve incremental improvements in prediction. In frames643

with resolutions of 478× 638 pixels, the final model reported an average pixel error of 7.15± 4.1 (mean ± std, n644

= 1311 frames) pixels across all body parts. Input features for the regression models were generated as smoothed645

Euclidean distances between coordinates of each body part in consecutive frames. Additionally, facial movements646

were quantified using face motion energy from cropped behavior videos (Stringer et al. 2019). At each time point,647

this energy was determined as the sum of the absolute differences between consecutive frames. Lastly, the full set648

of methodological details for pupil tracking can be found in Siegle, Jia, et al., 2021.649
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Variability metrics650

Shared Variance651

To investigate the co-variation of diverse neurons within a population, we employed linear dimensionality re-652

duction techniques, as summarized in (Williamson et al. 2016). Specifically, we utilized factor analyses (FA) to653

quantify the percentage of variance shared across neural populations in the visual cortex. FA explicitly divides the654

spike count covariance into two components: a shared component and an independent component. The shared655

component captures the variability that is common across neurons within the recorded population, while the in-656

dependent component quantifies the Poisson-like variability specific to each individual neuron. The FA analysis is657

performed on a matrix, x ∈ Rn×T , comprising spike counts from n simultaneously recorded neurons, along with a658

corresponding mean spike count vector, µ ∈ Rn×1. As illustrated in Figure 4D, FA effectively separates the spike659

count covariance into the shared component represented by LLT and the independent component represented by660

Ψ.661

x ∼ N (µ,LLT +Ψkk) (3)

Here, L ∈ Rn×m is the loading matrix that relates the ‘m’ latent variables to the neural activity, and Ψ is a662

diagonal matrix comprising independent variances of each neuron. We calculated the percent shared variance for663

each neuron by utilizing the model estimates of the loading matrix, L, and the diagonal matrix, Ψ. This enabled664

us to quantify the degree to which the variability of each neuron was shared with at least one other neuron within665

the recorded population. For the kth neuron, the percent shared variance was evaluated as follows:666

% shared variance = 100× LkL
T
k

LkLT
k +Ψ

(4)

For our analyses, the FA model parameters, µ,L, and Ψ, were estimated using singular-value decomposition667

(sklearn.decomposition.FactorAnalysis). The number of latent variables, m, was determined by applying FA to668

the spike counts and selecting the value for m that maximized a three-fold cross-validated data likelihood (m =669

24 ± 3 factors, mean ± std). Spike counts were evaluated in 30 ms bins and all values of shared variance reported670

in the paper (Figures 4D, 6F) present averages over all neurons in the given analyses. In Figure 4, state-specific671

shared variance for each neuron was evaluated on spike count matrices, x ∈ Rn×Ts , comprised of concatenated672

epochs from each state. This allowed us to assess how much variability each neuron shared with others during673

specific oscillation states.674

Coefficient of Variation675

In our study, we investigate the spike timing variability of single neurons by analyzing the distributions of their676

inter-spike-intervals (ISIs). To achieve this, we constructed histograms of the ISIs and quantified their character-677

istics using the coefficient of variation (CV). The CV is a dimensionless metric that represents the relative width678

of the ISI histogram. It is calculated as the ratio between the standard deviation of the ISIs (σ∆t) and their mean679

(∆t).680

CV =
σ∆t

∆t
(5)

To evaluate the coefficient of variation (CV) of individual neurons in different states, we created histograms681

of their inter-spike-intervals (ISIs) based on the spike times observed within each state. However, since the large682

differences in the dwell times of different states would bias the range of ISIs in each state, and, consequently, the683

state-specific coefficients, we fixed the range of the ISI histograms. We chose an interval of t = 2.5s, the range684

at which incremental increase in CV had the largest increase (the point of largest curvature) before it plateaued685

(Figure S6B). Finally, values of CV reported throughout the paper (Figures 4E, 6F), represent the average across686

all single neurons in the given analyses.687

Fano Factor688

We evaluated the trial-to-trial variability of neuronal activity in the visual cortex using Fano factor (FF), calculated689

as the ratio of variance to the mean spike count across trials, respectively. Similar to previous studies in the visual690

cortex (Kara et al. 2000; Softky and Koch 1993), we computed the FF of each neuron within non-overlapping691

windows of 150 ms and averaged it across time. However, quantifying trial-wise variability of single neurons692

in a state-specific manner posed challenges. Partitioning each session into states over time disrupted the trial693

structure, necessitating an additional constraint over the number of trials in each window. A time-window was694

considered for FF evaluation if the mouse remained in the same state across atleast 10 trials for the complete695

duration of the time-window (150 ms). For all analyses, FF was evaluated only on units whose receptive fields696

were at least 20 degrees away from the monitor’s edge (Figures 4F, 6F).697
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Mutual information698

Mutual information (MI) measures the reduction in uncertainty about one random variable when the value of699

another variable is known (Cover 1991). For two variables, X and Y , it is calculated as the difference between the700

total entropy of X, denoted as H(X), and the entropy that remains in X after learning the value of Y , referred701

to as the conditional entropy H(X|Y ).702

MI(X;Y ) = H(X)−H(X|Y ) (6)

= H(X) +H(Y )−H(X,Y ) (7)

Similar to correlation, MI is symmetric in X and Y , meaning that MI(X;Y ) = MI(Y ;X). This is evident when703

MI is re-written in terms of joint entropy between the variables (equation 7). However, MI surpasses correlation704

in its capacity to capture non-linear connections between variables. Given that responses of visual neurons can705

be highly non-linear functions of the visual input, we favored MI as our primary metric to quantify the amount of706

pixel-level information embedded in the neuronal activity of the visual cortex. Yet, calculating entropy requires707

knowledge of the joint probability distribution function (pdf) of the random variables, which is often unavailable.708

Many studies resort to ’plug-in’ estimators that involve intricate evaluations of individual pdfs, a particularly709

onerous task for sizable datasets like ours. To sidestep the need for pdf estimation, we employed a matrix-based710

entropy estimator whose properties have been shown to align with the axiomatic properties of Renyi’s α-order711

entropy (α > 0) (Sanchez Giraldo et al. 2015).712

Here, we provide a brief description of the process of entropy evaluation using the estimator, for specific713

details see Sanchez Giraldo et al. 2015. First, the sample variable, X = [x1, x2, ..., xN ] ∈ RN×M , is projected714

into a reproducing kernel Hilbert space (RKHS) through a positive definite kernel, κ : X × X 7→ R. Next, a715

corresponding normalized Gram matrix, denoted as A, is generated from the pairwise evaluations of the kernel, κ.716

In this matrix, each entry Ai,j is calculated as 1
T

Kij√
KiiKjj

, where Ki,j = κ(xi, xj) and K ∈ RN×N . The entropy717

estimator then defines entropy using the eigenspectrum of the normalized Gram matrix A, following the equation718

(8), where λj(A) represents the jth eigenvalue of matrix A. Finally, the joint entropy, H(X,Y ) or Sα(A,B), is719

evaluated as the entropy of the Hadamard product, A ◦B (equation 9), where B is the normalized Gram matrix720

associated with Y . The Hadamard product is interpreted as computing a product kernel, κ((xi, yi), (xj , yj)).721

Sα(A) =
1

1− α
log2

[
N∑

j=1

λj(A)α
]
, (8)

722

Sα(A,B) = Sα

(
A ◦B

trace(A ◦B)

)
(9)

In our analyses, we consider X = [x1, x2, ..., xN ] ∈ RN×M to represent the spike count matrix for all neurons723

in the population, where each xi ∈ RM is a vector containing spike counts from M neurons at time i. Similarly,724

Y = [y1, y2, ..., yN ] ∈ RN×P is a matrix containing image pixels, with each yi representing a flattened vector of all725

pixels in the stimulus image at time i. For state-wise analyses of MI (Figure 4G), we exclusively considered times726

corresponding to the specific state under examination. MI was computed per trial, but only when the subject727

had spent at least 3 seconds in the particular state during the trial, i.e., i ∈ [3, 30] seconds. Each frame was728

downsampled by a factor of 5, and spike counts were evaluated in 30 ms bins to match the stimulus frame rate.729

To constrain the metric between [0, 1], all MI measures were normalized by the geometric mean of the individual730

entropy of the two variables, Sα(A) and Sα(B) (Strehl and Ghosh 2002). The values presented in the paper are731

averages taken across all subjects (Figure 3F, 4G).732

Entropy estimation is dependent on two hyperparameters: the order, α , and the kernel, κ. Given the sparsity733

of neural activity data, we chose the order, α, to be 1.01. Next, κ is a positive definite kernel that determines734

the RKHS and thus dictates the mapping of the probability density functions (pdfs) of the input variables to735

the RKHS. For our analyses, we employed a non-linear Schoenberg kernel (equation 10). These positive definite736

kernels are universal, in that, they have been proven to approximate arbitrary functions on spike trains (Park737

et al. 2013). The window, w, to evaluate spike counts was set to 30 ms to match the frame rate of the visual738

stimulus, and the kernel width, σk, was determined using Scott’s rule (Scott and Sain 2005).739

κ(xi, xj) = exp

{ M∑
m=1

− 1

σκ
(xi,m − xj,m)2

}
(10)

Stimulus features740

Capitalizing on the ethological significance of a naturalistic stimuli (Dan et al. 1996; Srinivasan et al. 1982; Yao741

et al. 2007) and to mitigate sudden changes in neural activity due to abrupt changes in visual stimulus, our analysis742

centered on neural data obtained from repeated viewings of a 30-second natural movie clip. We anticipated that743
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the statistical properties of the clip would significantly contribute to explaining neuronal variability. In order to744

reveal any statistical preferences of neurons across the cortical hierarchy, we constructed stimulus features from745

both low- and high-order (> second-order moments) properties of the pixel distribution. The low-order features746

included image intensity and contrast, whereas, the high-order features included kurtosis, entropy, energy, and747

edges.748

Intensity and contrast: These metrics captured the first and second order statistics of the image, and they749

were evaluated as the mean (µm) and standard deviation (σm) of all the pixel values in each image frame, I,750

respectively.751

Kurtosis: A higher-order statistic of the pixel distribution, Kurtosis measures the extent to which pixel values752

tend to cluster in the tails or peaks of the distribution. This metric was computed on the distribution of pixels753

within each image frame by determining the ratio between the fourth central moment and the square of the754

variance.755

Kurt[I] =
E[(I − µm)4]

σ4
m

(11)

Entropy: To assess the average information content within each image frame, entropy was calculated based756

on the sample probabilities (pi) of pixel values spanning the range of 0 to 255.757

H[I] = −
npixels∑

i=1

pilog2(pi) (12)

Energy : Similar to the quantification of face motion energy (Stringer et al. 2019), we evaluated image energy758

as the absolute sum of the differences between the pixel values of consecutive frames.759

E[I] =

npixels∑
i=1

| It − It−1 | (13)

Edges: Given the observed line and edge selectivity of visual cortical neurons (Hubel and Wiesel 1968), we760

devised this metric to quantify the fraction of pixels that contribute to edges within a given image frame. For761

the identification of edges in each frame, we employed Canny edge detection (cv.Canny). This technique involves762

several sequential steps. First, a 2D Gaussian filter with dimensions of 5 × 5 pixels was applied to the image to763

reduce noise. Subsequently, the smoothed image underwent convolution with Sobel kernels in both horizontal and764

vertical directions, producing first derivatives along the respective axes, as described in equations (14 - 15). The765

resulting edge directions (Θ) were approximated to one of four angles: [0◦, 45◦, 90◦, 135◦]. To refine the edges, a766

process called edge thinning was used. During this step, the entire image was scanned to locate pixels that stood767

as local maxima within their gradient-oriented vicinity. These selected pixels moved on to the subsequent phase,768

while the rest were set to zero. Lastly, two threshold values were introduced for edge identification. Edges with769

intensity gradients below the lower threshold were disregarded, whereas those with gradients above the higher770

threshold were retained as ’sure edges’. Pixels with gradient intensities falling between these two thresholds were771

analyzed based on their connection to a ’sure’ edge. Ultimately, the output of the Canny edge detector was a772

binary image outlining the edge-associated pixels. The metric ’edges’ was computed as the mean value of this773

binary image.774

gradient =
√

G2
x +G2

y (14)

Θ = tan−1Gy

Gx
(15)

Input data for the HMM-predictor model775

Identical set of features were employed to predict both averaged neuronal population activity and single neuron776

responses. These features were grouped into three distinct categories to evaluate the respective contributions of777

each set of variables. The categorization of features is as follows: 1. stimulus features, 2. behavioral features,778

and 3. features encompassing internal brain dynamics, which included raw LFPs from the same cortical area,779

as well as averaged neuronal population activity from visual areas other than the target area. For raw LFPs,780

representative channels were once again selected across the cortical depth, ensuring the inclusion of one channel781

from each layer. Stimulus and behavioral features were sampled at a frequency of 30 Hz. However, to align with782

this temporal resolution, both LFPs and averaged population activity were binned into 30 ms bins, where each783

bin represented an average signal value within the respective time window.784

The broad range of input features exhibited pronounced inter-correlations, and constructing an encoding model785

using a design matrix containing linearly dependent columns inherently jeopardizes model reliability. To avoid this786
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multicollinearity in the design matrix, we systematically orthogonalized the input features using QR decomposition787

(Mumford et al. 2015). QR decomposition of a matrix, denoted as M ∈ Rm×n, yields M = QR, where Q ∈ Rm×n
788

denotes an orthonormal matrix and R ∈ Rn×n represents an upper triangular matrix. Consequently, matrix Q789

spans the same space as the columns of M , ensuring that the columns of Q maintain mutual orthogonality. As790

QR decomposition systematically decorrelates each column from all preceding ones, the arrangement of columns791

within the matrix becomes pivotal.792

Prior to constructing the time-shifted design matrix, we first orthogonalized internal brain activity relative to793

all other input features, positioning these columns towards the latter part of the matrix, M . This step was aimed794

at reducing the potential influence of stimulus and behavior features on brain activity (Musall et al. 2019). We795

retained the original definitions of stimulus features due to their limited correlations within and across groups796

(rwithin = 0.3± 0.1, racross = 0.06± 0.1, mean ±std Figure 5A, panel 2). Given the strong correlations between797

behavioral features (rwithin = 0.4 ± 0.2, racross = 0.07 ± 0.07, mean ± std), we applied QR decomposition to798

decorrelate all behavioral variables among themselves. The final collection of input features for the full model799

comprised behavioral features that had undergone orthogonalization among themselves, stimulus features in their800

original form, and internal brain activity features that were orthogonal both within and across the categories of801

features. Next, each input signal of length τ was organized such that each row consisted of variables shifted in time802

by one frame (30 Hz) relative to the original, also known as a Toeplitz matrix. Lastly, to structure the design803

matrix, the various input signals were time-aligned and concatenated. Including a time-shifted design matrix804

enabled us to account for the temporal dependency between various sources and neural activity. To determine805

the appropriate time dependency for each type of neural data (averaged neuronal population and single neuron806

activity), we tested a range of values (population model: [0.2 - 6]s, single-neuron model: [0.2 - 2]s) and chose the807

dependency that maximized the model’s cross-validated explained variation, cvR2 (Figure S7).808

Lastly, when quantifying group-specific contributions using unique models, the features of internal brain ac-809

tivity were orthogonalized within the group. This approach was taken to prevent partial decorrelation across810

groups, as the designed stimulus features and behavioral features might not encompass the entire array of fea-811

tures encoded in neural activity. Such partial decorrelation could potentially obscure the interpretability of the812

contributions from each category of input features to spiking variability.813

HMM - predictor model814

The linear HMM-predictor model was constructed to predict the averaged neuronal population activity and single-815

neuron spike rates. Unlike classical linear prediction models that assume constant relative contributions of various816

sources to spiking variability, the HMM-predictor model deviates from this assumption by accounting for variations817

in contributions resulting from internal state fluctuations. To achieve this, each predictor model learns regressors818

only from signals associated with a state. This approach enables us to delve into state-specific investigations of819

the relative contributions across the three distinct sources of variability outlined earlier. Each predictor model820

is tailored specifically to the neural activity in each state. Importantly, it should be highlighted that the HMM821

states are held constant. In other words, the HMM model is not optimized to improve predictions but maintains822

its established definitions based on LFPs. To quantify the contributions of the variability sources to the averaged823

population activity, we used ridge regression, whereas spiking activity was modeled using a generalized linear824

model (GLM).825

Population model826

To mitigate overfitting, the population model was trained with ridge regression. Ridge regression extends the cost827

function of ordinary least squares by introducing an additional l2 penalty, (λ), on the regression coefficients (β).828

This penalty effectively shrinks the coefficients of input variables that contribute less to the prediction, promoting829

smoother and more generalizable regression coefficients (equation 16). In our HMM based regression model, the830

design matrix Xs and the regressand, ys, are informed by the HMM, comprising signals corresponding to one831

of three identified states (s = [SH , SI , SL]). The magnitude of the regularization penalty, λ, for weights in each832

state were individually determined through three-fold cross-validation of R2 on a randomly selected 30% subset833

of the dataset.834

min
β

(y −Xβ)T (y −Xβ) + λβTβ (16)

Single neuron model835

A regularized Poisson GLM was used to model the firing rate of each neuron while taking into account variances836

associated with internal state fluctuations. The encoding model describes spike counts of single neurons as a837

Poisson distribution whose expected value can be modeled as the exponential of the linear combination of input838

features, i.e, E(y|X) = eθ
TX . The coefficients of the regression model, θ, are then estimated by penalized maxi-839

mum likelihood with an l2 penalty on the coefficients (equation 17) (Pillow et al. 2008). To avoid overfitting, the840
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magnitude of the regularization penalty, λ, for weights for each neuron in each state were individually determined841

using nested-five-fold cross-validation of R2 during training (Cawley and Talbot 2010).842

max
θ

L(θ|X, y) = log(p(y; eθ
TX))− λθT θ (17)

The final evaluation of the reported scores (Figures 5, 6) includes a five-fold cross-validation of explained843

variance (cvR2, equation 18), where ŷ is the predicted spike rate and y is the mean of the true spike rate. The844

cvR2 values in Figure 6 were computed on spike counts of single neurons smoothed with a 50-ms Gaussian for845

each trial.846

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − yi)
2

(18)

To quantify the state-wise contributions of the input features, we partition the dataset into training and testing847

sets such that each fold contains an equitable representation of signals from every state. This step was crucial848

to prevent any potential biases in estimating contributions due to an imbalance in the number of data points in849

each state. State-specific contributions were evaluated on the respective performance of the state-wise regressors,850

while overall performance was evaluated by concatenating the predictions across the three state models in each851

fold.852
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Gratiy, S. L., Gutnisky, D. A., Häusser, M., Karsh, B., Ledochowitsch, P., Lopez, C. M., Mitelut,971

C., Musa, S., Okun, M., Pachitariu, M., Putzeys, J., Rich, P. D., Rossant, C., Sun, W.-l., Svoboda,972

K., Carandini, M., Harris, K. D., Koch, C., O’Keefe, J., and Harris, T. D. (2017). Fully integrated973

silicon probes for high-density recording of neural activity. Nature, 551(7679):232–236.974

Kara, P., Reinagel, P., and Reid, R. C. (2000). Low Response Variability in Simultaneously Recorded975

Retinal, Thalamic, and Cortical Neurons. Neuron, 27(3):635–646.976

Kohn, A., Coen-Cagli, R., Kanitscheider, I., and Pouget, A. (2016). Correlations and Neuronal Population977

Information. Annual Review of Neuroscience, 39(1):237–256.978

Lin, I. C., Okun, M., Carandini, M., and Harris, K. D. (2015). The Nature of Shared Cortical Variability.979

Neuron, 87(3):644–656.980

Linderman, S., Johnson, M., Miller, A., Adams, R., Blei, D., and Paninski, L. (2017). Bayesian Learning981

and Inference in Recurrent Switching Linear Dynamical Systems. In Singh, A. and Zhu, J., editors,982

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, volume 54983

of Proceedings of Machine Learning Research, pages 914–922. PMLR.984

Lombardo, J. A., Macellaio, M. V., Liu, B., Palmer, S. E., and Osborne, L. C. (2018). State de-985

pendence of stimulus-induced variability tuning in macaque MT. PLOS Computational Biology,986

14(10):e1006527–.987

Lovett-Barron, M., Andalman, A. S., Allen, W. E., Vesuna, S., Kauvar, I., Burns, V. M., and Deisseroth,988

K. (2017). Ancestral Circuits for the Coordinated Modulation of Brain State. Cell, 171(6):1411–989

1423.990

Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., and Miller, E. K. (2016). Gamma991

and Beta Bursts Underlie Working Memory. Neuron, 90(1):152–164.992

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-dependent computation by993

recurrent dynamics in prefrontal cortex. Nature, 503(7474):78–84.994

Matteucci, G., Marotti, R. B., Riggi, M., Rosselli, F. B., and Zoccolan, D. (2019). Nonlinear Processing of995

Shape Information in Rat Lateral Extrastriate Cortex. Journal of Neuroscience, 39(9):1649–1670.996

Mccormick, D. A., Nestvogel, D. B., and He, B. J. (2020). Annual Review of Neuroscience Neuromodu-997

lation of Brain State and Behavior.998

25

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.03.587408doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587408
http://creativecommons.org/licenses/by-nc-nd/4.0/


McGinley, M. J., David, S. V., and McCormick, D. A. (2015). Cortical Membrane Potential Signature of999

Optimal States for Sensory Signal Detection. Neuron, 87(1):179–192.1000

McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform Manifold Approximation and Projection1001

for Dimension Reduction.1002

Moreno-Bote, R., Beck, J., Kanitscheider, I., Pitkow, X., Latham, P., and Pouget, A. (2014). Information-1003

limiting correlations. Nature Neuroscience, 17(10):1410–1417.1004

Mumford, J. A., Poline, J.-B., and Poldrack, R. A. (2015). Orthogonalization of Regressors in fMRI1005

Models. PLOS ONE, 10(4):e0126255–.1006

Murray, J. D., Bernacchia, A., Freedman, D. J., Romo, R., Wallis, J. D., Cai, X., Padoa-Schioppa, C.,1007

Pasternak, T., Seo, H., Lee, D., and Wang, X.-J. (2014). A hierarchy of intrinsic timescales across1008

primate cortex. Nature Neuroscience, 17(12):1661–1663.1009

Murthy, V. N. and Fetz, E. E. (1996). Oscillatory activity in sensorimotor cortex of awake monkeys:1010

synchronization of local field potentials and relation to behavior. Journal of Neurophysiology,1011

76(6):3949–3967.1012

Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S., and Churchland, A. K. (2019). Single-trial neural1013

dynamics are dominated by richly varied movements. Nature Neuroscience, 22(10):1677–1686.1014

Nandy, A., Nassi, J. J., Jadi, M. P., and Reynolds, J. (2019). Optogenetically induced low-frequency1015

correlations impair perception. eLife, 8:e35123.1016

Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., and Mathis, M. W. (2019). Using DeepLabCut1017

for 3D markerless pose estimation across species and behaviors. Nature Protocols, 14(7):2152–2176.1018

Niell, C. M. and Stryker, M. P. (2010). Modulation of Visual Responses by Behavioral State in Mouse1019

Visual Cortex. Neuron, 65(4):472–479.1020

Olcese, U., Iurilli, G., and Medini, P. (2013). Cellular and Synaptic Architecture of Multisensory Inte-1021

gration in the Mouse Neocortex. Neuron, 79(3):579–593.1022

Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., Trautmann,1023

E. M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., Henderson, J. M., Shenoy, K. V., Abbott,1024

L. F., and Sussillo, D. (2018). Inferring single-trial neural population dynamics using sequential1025

auto-encoders. Nature Methods, 15(10):805–815.1026

Park, I. M., Seth, S., Paiva, A. R. C., Li, L., and Principe, J. C. (2013). Kernel Methods on Spike Train1027

Space for Neuroscience: A Tutorial. IEEE Signal Processing Magazine, 30(4):149–160.1028

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-1029

hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,1030

M., and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res.,1031

12(null):2825–2830.1032

Pereira, T. D., Tabris, N., Matsliah, A., Turner, D. M., Li, J., Ravindranath, S., Papadoyannis, E. S.,1033

Normand, E., Deutsch, D. S., Wang, Z. Y., McKenzie-Smith, G. C., Mitelut, C. C., Castro, M. D.,1034

D’Uva, J., Kislin, M., Sanes, D. H., Kocher, S. D., Wang, S. S.-H., Falkner, A. L., Shaevitz, J. W.,1035

and Murthy, M. (2022). SLEAP: A deep learning system for multi-animal pose tracking. Nature1036

Methods, 19(4):486–495.1037

Perkel, D. H. and Bullock, T. H. (1968). Neural coding. Neurosciences Research Program Bulletin,1038

6(3):221–348.1039

Piet, A., Ponvert, N., Ollerenshaw, D., Garrett, M., Groblewski, P. A., Olsen, S., Koch, C., and Arkhipov,1040

A. (2023). Behavioral strategy shapes activation of the Vip-Sst disinhibitory circuit in visual cortex.1041

bioRxiv.1042

Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., and Simoncelli,1043

E. P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population.1044

Nature, 454(7207):995–999.1045

Poulet, J. F. A. and Petersen, C. C. H. (2008). Internal brain state regulates membrane potential1046

synchrony in barrel cortex of behaving mice. Nature, 454(7206):881–885.1047

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition.1048

Proceedings of the IEEE, 77(2):257–286.1049

Recanatesi, S., Pereira-Obilinovic, U., Murakami, M., Mainen, Z., and Mazzucato, L. (2022). Metastable1050

attractors explain the variable timing of stable behavioral action sequences. Neuron, 110(1):139–153.1051

Reimer, J., McGinley, M. J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D. A., and Tolias, A. S.1052

(2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex.1053

Nature Communications, 7(1):13289.1054

Reinagel, P. and Reid, R. C. (2000). Temporal Coding of Visual Information in the Thalamus. Journal1055

of Neuroscience, 20(14):5392–5400.1056

26

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.03.587408doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587408
http://creativecommons.org/licenses/by-nc-nd/4.0/


Renart, A. and Machens, C. K. (2014). Variability in neural activity and behavior.1057

Saleem, A. B., Ayaz, A. I., Jeffery, K. J., Harris, K. D., and Carandini, M. (2013). Integration of visual1058

motion and locomotion in mouse visual cortex. Nature Neuroscience, 16(12):1864–1869.1059

Sanchez Giraldo, L. G., Rao, M., and Principe, J. C. (2015). Measures of Entropy From Data Using1060

Infinitely Divisible Kernels. IEEE Transactions on Information Theory, 61(1):535–548.1061

Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B. (2011). Finding a ”Kneedle” in a Haystack:1062

Detecting Knee Points in System Behavior. In 2011 31st International Conference on Distributed1063

Computing Systems Workshops, pages 166–171.1064

Scherberger, H., Jarvis, M. R., and Andersen, R. A. (2005). Cortical Local Field Potential Encodes1065

Movement Intentions in the Posterior Parietal Cortex. Neuron, 46(2):347–354.1066

Schölvinck, M. L., Saleem, A. B., Benucci, A., Harris, K. D., and Carandini, M. (2015). Cortical state1067

determines global variability and correlations in visual cortex. Journal of Neuroscience, 35(1):170–1068

178.1069

Schroeder, C. E., Lindsley, R. W., Specht, C., Marcovici, A., Smiley, J. F., and Javitt, D. C. (2001).1070

Somatosensory Input to Auditory Association Cortex in the Macaque Monkey. Journal of Neuro-1071

physiology, 85(3):1322–1327.1072

Scott, D. W. and Sain, S. R. (2005). Multidimensional Density Estimation. Handbook of Statistics,1073

24:229–261.1074

Shadlen, M. N. and Newsome, W. T. (1998). The Variable Discharge of Cortical Neurons: Implications for1075

Connectivity, Computation, and Information Coding. Journal of Neuroscience, 18(10):3870–3896.1076
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Supplementary Figures1144

A B Cpearson’s r = 0.69 ± 0.06,  p = 0
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Figure S1: A, Complete power spectral density (PSD) in a single channel overlaid with the PSDs of the
filtered LFPs in the respective frequency bands. B, State sequences estimated using Local field potentials
(LFPs) from individual areas of an example mouse. One channel from each layer was incorporated
into the Hidden Markov Model (HMM) input matrix. C, Histogram summarizing the average pairwise
correlations between state sequences estimated from individual areas. D, Channel classification into L2/3,
L4, or L5/6 based on analyses of the power spectral density (left) and current source density (right) of
the LFPs along the cortical depth during the presentation of flashes. E, State sequences estimated using
LFPs from individual layers of an example mouse. LFPs from all areas were included in the HMM input
matrix. F, Histogram illustrating the average pairwise correlations between state sequences estimated
from individual layers.
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Figure S2: A, K-means clustering to validate the optimal number of states for the Hidden Markov Model
(HMM). Elbow method on the variance explained by K clusters. (Inset) Histogram of the optimal number
of states across all mice B, UMAP projection of the LFP inputs provided to the HMM in an example
mouse. (Inset) Silhouette scores based on HMM states and UMAP projection. C, State-specific power-
spectral density of all LFPs in V1 in an example mouse. Such decomposition in all mice further confirmed
the spectral distinction observed across the different oscillation states.
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A B

Figure S3: A, State emission matrix summarizing the means of each input features within the HMM. B,
State transition probability matrix. Results from an example mouse.

30

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.03.587408doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587408
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C D

E F

pr
ob

ab
ili

ty

I H
 I 

I  L
 I

H I  H  

L I  L  

H I  L  

L I  H  

H L  H  

L H
  L  

L H
  I  

I H
  L  

I L
  H  

H L  I  

I H
 I 

I  L
 I

H I  H  

L I  L  

H I  L  

L I  H  

H L  H  

L H
  L  

L H
  I  

I H
  L  

I L
  H  

H L  I  

I H
 I 

I  L
 I

H I  H  

L I  L  

H I  L  

L I  H  

H L  H  

L H
  L  

L H
  I  

I H
  L  

I L
  H  

H L  I  

Shu�ed movies Spontaneous Drifting gratings

Figure S4: A, Model comparison among Hidden Markov Models (HMMs) across a range of latent states
for different stimulus types. B, Distribution of LFP power in the three-state model as subjects viewed
different stimuli. C, Dwell times in each state as subjects viewed various stimuli. D, Matrices depicting
state transition probabilities. E, Average probability of observing 3-step or 2-step (inset) transition
sequences to different states while viewing various stimuli. Transition probabilities were calculated from
observed sequences averaged across all mice. F, Number of state transitions per second during the viewing
of different stimuli.
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Figure S5: A, Scatter plot of pupil size and running speed color-coded to demarcate the time points of
different states. B, Average correlation between behavioral states identified individually using running
speed, pupil size and facial motion with internal oscillation states.
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Figure S6: A, Information encoding along the visual hierarchy across all oscillation states, quantified using
mutual information (MI). Error bars represent s.e.m. B, Time-scale estimation for the construction of
inter-spike-interval histograms, utilized in the estimation of the coefficient of variation metric. C, Box plot
summarizing Fano factors in each area (Pearson correlation with anatomical hierarchy scores excluding
RL, rp−RL = −0.7, pp−RL = 0.11) D, Comparison of Fano factor across visual areas evaluated over time
when the mice were exposed to full-field light flashes.

A B C D

Figure S7: A, Selection of kernel length, τ , for HMM-regression model to predict variance in the averaged
neuronal population activity. The kernel length, which had the maximum predictive power, was chosen.
B,Optimal kernel length for area-wise HMM-regression models. C, Selection of kernel length, τ , for
HMM-GLM model to predict single neuron variability. Kernel length was selected on cross validated
r2 using the elbow method. Results from an example mouse. D, Optimal kernel length for area-wise
HMM-GLM models for the example mouse.
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Figure S8: A, Summary of the variance explained in averaged population activity by different stimu-
lus features. B, The contribution of different stimulus features to the variance of averaged population
activity across visual areas. C, State-wise contributions of different stimulus features to averaged pop-
ulation activity. D, Same as B, but during the high-frequency state.E, Significance results for C, p <
0.05, corrected for multiple comparisons. F, Significance results for D, p < 0.05, corrected for multiple
comparisons.
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Figure S9: A, Summary of the variance explained in averaged population activity by various behavioral
features. B, The contribution of different behavioral features to the variance of averaged population
activity across visual areas. C, State-wise contributions of behavioral features to averaged population
activity. D, Significance results for C, p < 0.05, corrected for multiple comparisons.
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Figure S10: A-E, Contributions from different input features to explain single neuron variance in different
visual areas. Analysis of the relative contributions to area-specific single-neuron variability showed that
the anterolateral visual areas (LM, AM, and AL) had the highest explained variance of approximately
26.2±0.9% (mean ± std). Consistent with other results, neurons in RL did not encode stimulus features as
well as the other visual areas. However, behavior and LFP features explained the most variance in RL and
AL neurons (average cvR2

B = 11.7± 0.7%, cvR2
LFP = 5.0± 0.7%, mean ± std), while these features were

the least predictive of activity in V1 neurons (average cvR2
B = 9.6%, cvR2

LFP = 3.6%). The predictive
power of the averaged neuronal population activity from neighboring areas had trends similar to that
observed in the population model, with V1 (average cvR2

P = 9.7%) neurons being the least predictive and
AM the most predictive (average cvR2

P = 11.8%). Moving across layers, L4 neurons reported the least
explained variance, while deep-layer neurons consistently had the highest explained variance across all
categories of input features (Figure S10L - O). F, Classification of single units into regular spiking (RS)
and fast spiking (FS) based on waveform duration. G-K, Contributions from different input features
to explain single neuron variance across RS and FS cell-types. L-O, Contributions from different input
features to explain single neuron variance across the cortical depth.
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